The coordination interactions between transition-metal ions (Cu, Ag) and sulfur atoms on ultrathin two-dimensional (2D) nanosheets of spin-crossover (SCO) metal-organic frameworks {[Fe(1,3-bpp)(NCS)]} (1,3-bpp = 1,3-di(4-pyridyl)propane), which constructed the ultrathin 2D nanosheets into three-dimensional (3D) nanoparticles, have made a profound effect on the SCO performance. Compared with 2D nanosheets, both the intraligand π-π* transition band and the metal-to-ligand charge transition band from the d(Fe) + π(NCS) to π*(1,3-bpp), for the 3D nanoparticles, have shown dramatic blue-shifts; meanwhile, the d-d transition band for the high-spin (HS) state Fe(II) ions has been generated, suggesting significantly the influence of 3D assemble-caused dimensional changes on the solid-state SCO performance of ultrathin 2D nanosheets. More importantly, by loading on the ytterbium ion (Yb)-sensitized hexagonal phase upconverting nanoparticles in the aqueous colloidal suspension, the near infrared (NIR) light (980 nm) triggered HS (high spin) to LS (low spin) state transitions have been observed, demonstrating the achievement of challenging target of NIR light-triggered molecular conversion under environment conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c00324 | DOI Listing |
Nanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Bloco 922, 60455-900, Fortaleza, 60455-900, BRAZIL.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We consider a half-filled Chern band and its transport properties in two phases that it may form: the electronic Fermi liquid and the composite-fermion Fermi liquid. For weak disorder, we show that the Hall resistivity for the former phase is very small, while for the latter it is close to 2h/e^{2}, independent of the distribution of the Berry curvature in the band. At rising temperature and high frequency, we expect the Hall resistivity of the electronic phase to rise, and that of the composite-fermion phase to deviate from 2h/e^{2}.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
In recent years, research on chiral bound states in the continuum (BIC) has surged, leading to the development of various chiral metasurfaces with narrow bandwidths by breaking of in-plane and out-of-plane symmetries. However, the ability to dynamically tune the working band remains relatively unexplored, which is valuable for chiral sensing applications. Optical phase-change materials, with tunable dielectric constants and switchable properties during phase transition, offer the potential for dynamic control of optical metasurfaces.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland.
The last decades have brought an interest in ultrasound applications in dermatology. Especially in the case of atopic dermatitis, where the formation of a subepidermal low echogenic band (SLEB) may serve as an independent indicator of the effects of treatment, the use of ultrasound is of particular interest. This study proposes and evaluates the computer-aided diagnosis method for assessing atopic dermatitis (AD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!