Recent advances in periodontal regeneration: A biomaterial perspective.

Bioact Mater

Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.

Published: June 2020

Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052441PMC
http://dx.doi.org/10.1016/j.bioactmat.2020.02.012DOI Listing

Publication Analysis

Top Keywords

periodontal regeneration
12
periodontal
8
periodontal tissues
8
regenerative periodontal
8
regeneration
6
advances periodontal
4
regeneration biomaterial
4
biomaterial perspective
4
perspective periodontal
4
periodontal disease
4

Similar Publications

Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Objectives: To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes.

Materials And Methods: The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR.

View Article and Find Full Text PDF

The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!