Noncoding microRNAs: small RNAs play a big role in regulation of ADME?

Acta Pharm Sin B

Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA.

Published: April 2012

There are considerable interindividual variations in drug absorption, distribution, metabolism and excretion (ADME) in humans, which may lead to undesired drug effects in pharmacotherapy. Some of the mechanistic causes are known, e.g., genetic polymorphism, inhibition and induction of ADME enzymes and transporters, while others such as posttranscriptional regulation of ADME genes are under active study. MicroRNAs (miRNAs) are a large group of small, noncoding RNAs that control posttranscriptional expression of target genes. More than 1000 miRNAs have been identified in the human genome, which may regulate thousands of protein-coding genes. Some miRNAs directly or indirectly control the expression of xenobiotic-metabolizing cytochrome P450 enzymes, ATP-binding cassette or solute carrier transporters and/or nuclear receptors. Consequently, intervention of miRNA epigenetic signaling may alter ADME gene expression, change the capacity of drug metabolism and transport, and influence the sensitivity of cells to xenobiotics. In addition, the expression of some ADME regulatory miRNAs is significantly changed in cells following the exposure to a given drug, and the consequent changes in ADME gene expression might result in distinct ADME properties and drug response. In this review, we summarized recent findings on the role of noncoding miRNAs in epigenetic regulation of ADME genes and discussed the potential impact on pharmacokinetics and pharmacodynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061715PMC
http://dx.doi.org/10.1016/j.apsb.2012.02.011DOI Listing

Publication Analysis

Top Keywords

adme
8
regulation adme
8
adme genes
8
adme gene
8
gene expression
8
drug
5
mirnas
5
expression
5
noncoding micrornas
4
micrornas small
4

Similar Publications

Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study.

View Article and Find Full Text PDF

Background: ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models.

Methods: To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued.

View Article and Find Full Text PDF

In recent years, rationally designed macrocycles have emerged as promising therapeutic modalities for challenging drug targets. Macrocycles can improve affinity, selectivity, and pharmacokinetic (PK) parameters, possibly via providing semirigid, preorganized scaffolds. Nevertheless, how macrocyclization affects PK-relevant properties is still poorly understood.

View Article and Find Full Text PDF

Aims: The beta-lactam antibiotic temocillin is increasingly used to treat extended-spectrum beta-lactamase (ESBL-producing) strains; however, its protein binding is complex. This study aims to predict unbound temocillin concentrations in various participant groups to determine its impact on the probability of target attainment (PTA) and to improve dosing recommendations.

Methods: The plasma pharmacokinetics were analysed using non-linear mixed-effects modelling.

View Article and Find Full Text PDF

In this study, a series of 16 arylidenehydrazide derivatives (7a-7p), hybridized with the natural product carvacrol, were successfully synthesized starting from anthranilic acid methyl ester. The cytotoxic effects of these compounds were examined against two different cell lines, A549 and BEAS-2B. Additionally, in silico studies were conducted to investigate the ligand-protein binding modes and their stabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!