Glioma initiating cells (GICs) function as the seed for the propagation and relapse of glioma. Designing a smart and efficient strategy to target the GICs and to suppress the multiple signaling pathways associated with stemness and chemoresistance is essential to achieving a cancer cure. Inspired by the metabolic difference in endocytosis between GICs, differentiated glioma cells, and normal cells, a tailored lipoprotein-like nanostructure is developed to amplify their internalization into GICs through receptor-stimulated macropinocytosis. As CXCR4 is highly expressed on GICs and glioma tumor sites, meanwhile, the activation of CXCR4 induces the receptor-stimulated macropinocytosis pathway in GICs, this CXCR4 receptor-stimulated lipoprotein-like nanoparticle (SLNP) achieves efficient accumulation in GICs in vitro and in vivo. By carrying microRNA-34a in the core, this tailored SLNP reduces sex-determining region Y-box 2 and Notch1 expression, powerfully inhibits GICs stemness and chemoresistance, and significantly prolongs the survival of GICs-bearing mice. Taken together, a tailored lipoprotein-based nanostructure realizes efficient GICs accumulation and therapeutic effect through receptor-stimulated macropinocytosis, providing a powerful nanoplatform for RNA interference drugs to combat glioma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055550 | PMC |
http://dx.doi.org/10.1002/advs.201903290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!