Atomic Scale Origin of Metal Ion Release from Hip Implant Taper Junctions.

Adv Sci (Weinh)

Department Microstructure Physics and Alloy Design Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 Düsseldorf 40237 Germany.

Published: March 2020

Millions worldwide suffer from arthritis of the hips, and total hip replacement is a clinically successful treatment for end-stage arthritis patients. Typical hip implants incorporate a cobalt alloy (Co-Cr-Mo) femoral head fixed on a titanium alloy (Ti-6Al-4V) femoral stem via a Morse taper junction. However, fretting and corrosion at this junction can cause release of wear particles and metal ions from the metallic implant, leading to local and systemic toxicity in patients. This study is a multiscale structural-chemical investigation, ranging from the micrometer down to the atomic scale, of the underlying mechanisms leading to metal ion release from such taper junctions. Correlative transmission electron microscopy and atom probe tomography reveals microstructural and compositional alterations in the subsurface of the titanium alloy subjected to in vitro gross-slip fretting against the cobalt alloy. Even though the cobalt alloy is comparatively more wear-resistant, changes in the titanium alloy promote tribocorrosion and subsequent degradation of the cobalt alloy. These observations regarding the concurrent occurrence of electrochemical and tribological phenomena are vital to further improve the design and performance of taper junctions in similar environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055581PMC
http://dx.doi.org/10.1002/advs.201903008DOI Listing

Publication Analysis

Top Keywords

cobalt alloy
16
taper junctions
12
titanium alloy
12
atomic scale
8
metal ion
8
ion release
8
alloy
7
scale origin
4
origin metal
4
release hip
4

Similar Publications

Evaluation of the shear bond strength of surface-treated Cobalt-Chromium metal crowns on corticobasal® implant abutments cemented using different luting agents.

J Stomatol Oral Maxillofac Surg

December 2024

Reader, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.. Electronic address:

Purpose: This in-vitro study aimed to compare the shear bond strength (SBS) of cobalt-chromium (Co-Cr) crowns on Corticobasal® implant abutments, evaluating the effects of two surface treatments and two luting agents.

Materials And Methods: Thirty Co-Cr crowns were fabricated using CAD-CAM technology with a direct metal laser sintering process and divided into three groups based on surface treatment: Group I (untreated), Group II (sandblasted with 50 μm Al₂O₃), and Group III (Er: YAG laser etching). Each group was further subdivided based on luting cement: Sub group A (GC Fuji Plus) and Sub group B (Rely X U200).

View Article and Find Full Text PDF

The impact of different occlusal guard materials on Candida albicans proliferation in the oral cavity.

Cell Mol Biol (Noisy-le-grand)

November 2024

Water Resources Engineering Department, College of Engineering, University of Duhok, Kurdistan Region- Iraq.

Candida albicans is an opportunistic fungal pathogen. It's a dimorphic fungus with hyphal form that can penetrate and proliferate the oral mucosa. Occlusal guard materials come into direct contact with the oral mucosa and saliva when worn for extended periods, the occlusal guard acts as a reservoir for C.

View Article and Find Full Text PDF

Effect of geometry on clasp retention force: a finite element analysis study.

BMC Oral Health

December 2024

Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, PR China.

Purpose: The retention force of a realistic clasp is influenced by multiple, interrelated factors, which complicates the identification of the fundamental relationship between clasp geometry and retention force. While realistic clasps exhibit various shapes, they share basic geometric elements such as length, diameter, and curvature. Simpler geometries are often more conducive to identifying the underlying issues.

View Article and Find Full Text PDF

It is a great challenge to prepare efficient and stable electrocatalysts for hydrogen evolution (HER) using non-precious metals. In this study, a series of PtCo/TiCT-Y (Y: 16, 32, and 320, Y indicates the quality of Co(NO)) catalysts were synthesized by loading PtCo alloy on TiCT. The PtCo/TiCT-32 catalyst showed the best HER performance, reaching a current density of 10 mA cm with low overpotential (36 and 101 mV) and small Tafel slopes (66.

View Article and Find Full Text PDF

Metal Ion Release from Orthodontic Archwires: A Comparative Study of Biocompatibility and Corrosion Resistance.

Molecules

November 2024

BT Orthodontic Office "Galeria Uśmiechów", Polskie Towarzystwo Techniki Ortodontycznej, Plac Piłsudskiego 25, 51-152 Wroclaw, Poland.

This study investigates the release of metal ions from commonly used orthodontic archwires, specifically, stainless steel (SS), nickel-titanium (NiTi), chromium-cobalt (CrCo), and titanium-molybdenum (TMA) alloys. To simulate oral conditions, each type of wire was immersed in artificial saliva at body temperature for a four-week period. Ion release levels were analyzed through ICP-OES mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!