10-Hydroxy-2-decenoic acid (10-HDA) as the main component of royal jelly has pharmacological characteristics. But the influence of 10-HDA on skin photoaging and photo damage is poorly understood. In the present study, we used 10-HAD immediately after UVA exposure and tested the effects on the attenuation of LMNAÄ150 expression in cultured human dermal fibroblasts Human dermal fibroblasts (cultured cells) were exposed to UVA irradiation. The mRNA level of LMNAÄ150 was determined by Taqman Real-Time PCR Assay. Real-time PCR analysis of LMNAÄ150 transcripts indicated that the level of LMNAÄ150 transcripts was higher in the UVA exposed group than the group treated with 10-HAD after UVA exposure (>8.22-fold). The LMNAÄ150 expression is down-regulated in human dermal fibroblasts after treatment with 10-HDA. It can be concluded that treatment with 10-HDA suppresses the UVA-induced gene expression of LMNAÄ150 and protects skin from UVA-induced photoaging and photo damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035451 | PMC |
http://dx.doi.org/10.26574/maedica.2019.14.4.327 | DOI Listing |
J Trauma Nurs
January 2025
Author Affiliations: St Andrew's Anglia Ruskin (StAAR) Research Group, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK (Dr Adegboye); Division of Plastic and Reconstructive Surgery, Red Cross War Memorial Children's Hospital; and Division of Plastic & Reconstructive Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa (Dr Pillay and Prof Adams).
Background: Contemporary research has shown that acellular dermal matrices can benefit adult lower extremity traumatic injuries; however, its use in children has not been explored.
Objective: This study aims to explore the use of acellular dermal matrices in pediatric complex lower extremity trauma.
Methods: This single-center retrospective observational cohort study of children with complex lower extremity trauma treated with Pelnac™, commercial acellular dermal matrices, was conducted at a tertiary hospital in South Africa from 2010 to 2017.
Am J Sports Med
January 2025
Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
Background: Interest in biological augmentation for improving bone-tendon interface (BTI) healing after arthroscopic rotator cuff repair (ARCR) is growing. Dermal fibroblasts, known for collagen synthesis similar to tenocytes, have shown effectiveness in BTI healing in chronic rotator cuff tear (RCT) models in rabbits. However, no human clinical trials have been conducted.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China. Electronic address:
In the health risk assessment of pesticides, methods for external exposure assessment have been well developed. However, quantifying the contribution of various exposure pathways or routes to internal dose remains challenging. This study introduced the internal allocation factor (IAF) for 319 pesticides to investigate the impact of different exposure pathways and routes on chemical distribution within the human body.
View Article and Find Full Text PDFmSphere
January 2025
Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.
Visceral leishmaniasis (VL) is a vector-borne disease caused by the obligate intracellular protozoan in India. VL can be complicated by post-kala-azar dermal leishmaniasis (PKDL), a macular or nodular rash that develops in 10%-20% of patients after treatment of VL in India. Patients with PKDL are infectious to sand flies, promoting further transmission of the parasite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!