Plastic pollution has become a global concern for ecosystem health and biodiversity conservation. Concentrations of plastics are manifold higher in the terrestrial system than the aquatic one. Micro/nanoplastics (M/NP) have the ability to alter soil enzymatic system, soil properties and also affect soil borne microorganisms and earthworms. Despite, the knowhow regarding modulatory effects of plastics are acquired from the study on aquatic system and reports on their phytotoxic potentials are limited. The presence of cell wall that could restrict M/NP invasion into plant roots might be the putative cause of this limitation. M/NP inhibit plant growth, seed germination and gene expression; and they also induce cytogenotoxicity by aggravating reactive oxygen species generation. Dynamic behavior of cell wall; the pores formed either by cell wall degrading enzymes or by plant-pathogen interactions or by mechanical injury might facilitate the entry of into roots M/NP. This review also provides a possible mechanism of large sized microplastics-induced phytotoxicity especially for those that cannot pass through cell wall pores. As M/NP affect soil microbial community and soil parameters, it is hypothesized that they could have the potential to affect N fixation and research should be conducted in this direction. Reports on M/NP-induced toxicity mainly focused only on one polymer type (polystyrene) in spite of the toxicological relevancies of other polymer types like polyethylene, polypropylene etc. So, the assessment of phytotoxic potential of M/NP should be done using other plastic polymers in real environment as they are known to intract with other environmental stressors as well as can alter the the soil-microbe-plant interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.15074 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Commun Biol
January 2025
Department of Chemistry, University of Warwick, Coventry, UK.
Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China; Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China. Electronic address:
Gibberellin (GA) is one of the crucial plant hormones involved in fruit ripening regulation. GASA genes, which respond to GA and encode cysteine-rich peptides, are prevalent in plants. While the GASA gene family has been identified in various plants, its role in persimmon fruit ripening remains unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia. Electronic address:
We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings.
View Article and Find Full Text PDFPlant Physiol
January 2025
College of Horticulture, China Agricultural University, Beijing 100193, China.
Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!