Molecules have high potential for novel applications as building blocks for electronic devices such as sensors due to the versatility of their electronic properties. Their use in devices offers a great potential for further miniaturization of electronic devices. We describe a method where nanoparticles functionalized with short-chain organic molecules are used to build a molecular electronics device (nanoMoED) sensor for studying electrical properties of organic molecules. We also report the application of such a nanoMoED for detecting environmental gases. Here we provide a detailed description of the nanoMoED fabrication process, nanoparticle synthesis and functionalization, the basics of the electrical measurements, and nanoMoED applications. The platform described here is capable of detecting electrical current flowing through just a few molecules. The versatility of such nanoMoEDs makes this platform suitable for a wide range of molecular electronics and molecular sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0319-2_23 | DOI Listing |
Chem Commun (Camb)
January 2025
Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.
View Article and Find Full Text PDFAnalyst
January 2025
Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!