A new ultrasonic-assisted dispersive solid-phase extraction method using mesoporous nanosorbent composed of silica, graphene, and palladium (II) (M S/G@-SH@Pd (II)), coupled with corona discharge ion mobility spectrometry, was developed for trace determination of organophosphorus pesticides. Initially, the M S/G@-SH@Pd (II) nanosorbent was synthesized and characterized. Then, the nanosorbent was used for the sorption and extraction of organophosphorus pesticides. Under the optimized conditions (pH = 7.0, 15 mg of sorbent, 3 min extraction time, ethanol as desorption agent, 3 min centrifuge time), the proposed technique provided good linearity (R > 0.994), repeatability (RSD < 4.6%), low limits of detection (0.15-0.30 ng mL), excellent preconcentration factor (PF = 472-478), and high recoveries (93-94%). The method was applied to the determination of organophosphorus pesticides in real water samples. The sorbent was reused in 5 cycles without any considerable loss of activity. Graphical abstract Schematic presentation of design and synthesis of mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-020-4174-2DOI Listing

Publication Analysis

Top Keywords

organophosphorus pesticides
12
mesoporous nanosorbent
8
nanosorbent composed
8
composed silica
8
silica graphene
8
graphene palladium
8
dispersive solid-phase
8
solid-phase extraction
8
extraction organophosphorus
8
ion mobility
8

Similar Publications

A review of click chemistry in the synthesis of organophosphorus triazoles and their biological activities.

Eur J Med Chem

January 2025

Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar. Electronic address:

Organophosphorus compounds, characterized by the incorporation of phosphorus into organic molecules, play a critical role in various fields such as medicine, agriculture, and industry. Their unique electronic properties and versatility make them essential in developing therapeutic agents, pesticides, and materials. One prominent class of organophosphorus compounds is organophosphorus heterocycles, which combine the benefits of both phosphorus and cyclic structures.

View Article and Find Full Text PDF

Studies have shown that the presence of allergens, including insecticides, significantly increases the risk of occupational allergic diseases among solar greenhouse workers. However, no studies have yet investigated the relationship between organophosphorus pesticide use by greenhouse workers and allergic diseases, and the role of the flora in this context remains unclear. Therefore, this study aimed to investigate the relationship between combined exposure to organophosphorus pesticides (OPs) and Glyphosate (GLY) and changes in total immunoglobulin E (IgE) levels, as well as to analyze the role of nasal flora in allergic status.

View Article and Find Full Text PDF

Effects of pesticide dichlorvos on liver injury in rats and related toxicity mechanisms.

Ecotoxicol Environ Saf

January 2025

West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China. Electronic address:

Dichlorvos (DDVP) is an organophosphorus pesticide commonly utilized in agricultural production. Recent epidemiological studies suggest that exposure to DDVP correlates with an increased incidence of liver disease. However, data regarding the hepatotoxicity of DDVP remain limited.

View Article and Find Full Text PDF

The bioaugmentation performance is severely reduced in the treatment of high-saline pesticide wastewater because the growth and degradation activity of pesticide degraders are significantly inhibited by high salt concentrations. In this study, a heterologous biodegradation pathway comprising the seven genes mpd/pnpABCDEF responsible for the bioconversion of p-nitrophenol (PNP)-substituted organophosphorus pesticides (OPs) into β-oxoadipate and the genes encoding Vitreoscilla hemoglobin (VHb) and green fluorescent protein (GFP) were integrated into the genome of a salt-tolerant chassis Halomonas cupida J9, to generate a genetically engineered halotolerant degrader J9U-MP. RT-PCR assays demonstrated that the nine exogenous genes are successfully transcribed to mRNA in J9U-MP.

View Article and Find Full Text PDF

Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!