Multiplexed CRISPR technologies, in which numerous gRNAs or Cas enzymes are expressed at once, have facilitated powerful biological engineering applications, vastly enhancing the scope and efficiencies of genetic editing and transcriptional regulation. In this review, we discuss multiplexed CRISPR technologies and describe methods for the assembly, expression and processing of synthetic guide RNA arrays in vivo. Applications that benefit from multiplexed CRISPR technologies, including cellular recorders, genetic circuits, biosensors, combinatorial genetic perturbations, large-scale genome engineering and the rewiring of metabolic pathways, are highlighted. We also offer a glimpse of emerging challenges and emphasize experimental considerations for future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062760 | PMC |
http://dx.doi.org/10.1038/s41467-020-15053-x | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China.
Developing efficient gene regulation tools is essential for optimizing microbial cell factories, but most existing tools only modulate gene expression at the transcriptional level. Regulation at the translational level provides a faster dynamic response, whereas developing a programmable, efficient and multiplexed translational regulation tool remains a challenge. Here, we have developed CRISPRi and CRISPRa systems based on hfCas13X that can regulate gene translation in Bacillus subtilis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
With the groundbreaking advancements in genome editing technologies, particularly CRISPR-Cas9, creating knockout mutants has become highly efficient. However, the CRISPR-Cas9 system introduces DNA double-strand breaks, increasing the risk of chromosomal rearrangements and posing a major obstacle to simultaneous multiple gene knockout. Base-editing systems, such as Target-AID, are safe alternatives for precise base modifications without requiring DNA double-strand breaks, serving as promising solutions for existing challenges.
View Article and Find Full Text PDFNat Commun
January 2025
CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!