Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens and produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from (BcsG) functions as a phosphoethanolamine transferase with substrate preference for cellulosic materials. Structural characterization of BcsG revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196641 | PMC |
http://dx.doi.org/10.1074/jbc.RA119.011668 | DOI Listing |
Acta Parasitol
January 2025
Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey.
Int J Biol Macromol
December 2024
Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan 610225, PR China. Electronic address:
Cellulose, synthesized by cellulose synthase (CESA) complexes, is an essential component of plant cell walls; defects in cellulose synthesis compromise cell wall integrity. The maintenance of this integrity is vital for plant growth, development, and stress responses. Consequently, plants must continuously synthesize and remodel their cell walls, a process intricately linked to cellulose biosynthesis.
View Article and Find Full Text PDFSci Rep
December 2024
School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.
Potato () is the fourth largest staple food crop globally. However, potato cultivation is frequently challenged by various diseases during planting, significantly impacting both crop quality and yield. Pathogenic microorganisms must first breach the plant's cell wall to successfully infect potato plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!