A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Central sensory-motor crosstalk in the neural gut-brain axis. | LitMetric

Central sensory-motor crosstalk in the neural gut-brain axis.

Auton Neurosci

Neuroscience Program, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana 61801, IL, USA.

Published: May 2020

The neural gut-brain axis consists of viscerosensory and autonomic motor neurons innervating the gastrointestinal (GI) tract. Sensory neurons transmit nutrient-related and non-nutrient-related information to the brain, while motor neurons regulate GI motility and secretion. Previous research provides an incomplete picture of the brain nuclei that are directly connected with the neural gut-brain axis, and no studies have thoroughly assessed sensory-motor overlap in those nuclei. Our goal in this study was to comprehensively characterize the central sensory and motor circuitry associated with the neural gut-brain axis linked to a segment of the small intestine. We injected a retrograde (pseudorabies; PRV) and anterograde (herpes simplex virus 1; HSV) transsynaptic viral tracer into the duodenal wall of adult male rats. Immunohistochemical processing revealed single- and double-labeled cells that were quantified per nucleus. We found that across nearly all brain regions assessed, PRV + HSV immunoreactive neurons comprised the greatest percentage of labeled cells compared with single-labeled PRV or HSV neurons. These results indicate that even though sensory and motor information can be processed by separate neuronal populations, there is neuroanatomical evidence of direct sensory-motor feedback in the neural gut-brain axis throughout the entire caudal-rostral extent of the brain. This is the first study to exhaustively investigate the sensory-motor organization of the neural gut-brain axis, and is a step toward phenotyping the many central neuronal populations involved in GI control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autneu.2020.102656DOI Listing

Publication Analysis

Top Keywords

neural gut-brain
24
gut-brain axis
24
motor neurons
8
sensory motor
8
neuronal populations
8
neural
6
gut-brain
6
axis
6
neurons
5
central sensory-motor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!