Non-cytotoxic silver nanoparticle levels perturb human embryonic stem cell-dependent specification of the cranial placode in part via FGF signaling.

J Hazard Mater

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: July 2020

Silver nanoparticles (AgNPs) are compounds used in numerous consumer products because of their desirable optical, conductive and antibacterial properties. However, several in vivo and in vitro studies have raised concerns about their potential developmental toxicity. Here, we employed a human embryonic stem cell model to evaluate the potential ectodermal toxicity of AgNPs, at human relevant concentrations. Among the four major ectodermal lineages tested, only cranial placode specification was significantly affected by AgNPs and AgNO, morphology-wise and in the expression of specific markers, such as SIX3 and PAX6. Mechanistically, we found that the effects of AgNPs on the cranial placode differentiation were probably due to Ag ion leakage and mediated by the FGF signaling. Thus, AgNPs may have the ability to alter the early stages of embryonic development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122440DOI Listing

Publication Analysis

Top Keywords

cranial placode
12
human embryonic
8
embryonic stem
8
fgf signaling
8
agnps
5
non-cytotoxic silver
4
silver nanoparticle
4
nanoparticle levels
4
levels perturb
4
perturb human
4

Similar Publications

The transcriptional landscape of the developing chick trigeminal ganglion.

Dev Biol

December 2024

Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA. Electronic address:

The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance.

View Article and Find Full Text PDF

Gain of 1q is a highly recurrent chromosomal abnormality in human pluripotent stem cells. In this work, we show that gains of 1q impact the differentiation capacity to derivates of the three germ layers, leading to mis-specification to cranial placode and non-neural ectoderm during neuroectoderm differentiation. Also, we found a weaker expression of lineage-specific markers in hepatoblasts and cardiac progenitors.

View Article and Find Full Text PDF

Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development.

Dev Dyn

October 2024

Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA.

Article Synopsis
  • * Scientists studied chick embryos to understand how this nerve develops and found a special protein called Elp1 that is important for its growth.
  • * When they reduced Elp1, the nerve didn't grow properly, which could help explain a disease called familial dysautonomia.
View Article and Find Full Text PDF

The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!