Magnetic skyrmions are promising candidates for future storage devices with a large data density. A great variety of materials have been found that host skyrmions up to the room-temperature regime. Lorentz microscopy, usually performed in a transmission electron microscope (TEM), is one of the most important tools for characterizing skyrmion samples in real space. Using numerical calculations, this work relates the phase contrast in a TEM to the actual magnetization profile of an isolated Néel or Bloch skyrmion, the two most common skyrmion types. Within the framework of the used skyrmion model, the results are independent of skyrmion size and wall width and scale with sample thickness for purely magnetic specimens. Simple rules are provided to extract the actual skyrmion configuration of pure Bloch or Néel skyrmions without the need of simulations. Furthermore, first differential phase contrast (DPC) measurements on Néel skyrmions that meet experimental expectations are presented and showcase the described principles. The work is relevant for material sciences where it enables the engineering of skyrmion profiles via convenient characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2020.112973 | DOI Listing |
Radiographics
February 2025
From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.).
Hepatobiliary (HB) contrast agents are increasingly valuable diagnostic tools in MRI, offering a wider range of applications as their clinical use expands. Normal hepatocytes take up HB contrast agents, which are subsequently excreted in bile. This property creates a distinct HB phase providing valuable insights into liver function and biliary anatomy.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France.
The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!