Celastrol is a natural pentacyclic triterpene extracted from the roots of Tripterygium wilfordi (thunder god vine). Celastrol was reported as a powerful anti-obesity drug with leptin sensitizing properties that decreases food consumption and mediates body weight loss when administered to diet-induced obese mice at 100 μg/kg body weight. The weight lowering properties of celastrol are likely mediated by the CNS, in particular, by the hypothalamus, but the final proof for the accumulation of celastrol in the brain and hypothalamus remains to be established. Here, we aimed to demonstrate that intraperitoneal celastrol administration at 100 μg/kg can rapidly reach the brain and, in particular, the hypothalamus of mice. We developed and validated a sensitive liquid chromatography mass spectrometry method for the quantitative determination of celastrol in murine tissues, namely liver, brain and hypothalamus. Chow-fed lean mice were randomly assigned to the vehicle vs. celastrol groups, injected with saline or 100 μg/kg body weight of celastrol, and sacrificed 30 min or 120 min post injection. Celastrol was extracted from homogenized tissue using ethyl acetate as organic solvent, and quantified using a matrix-matched calibration curve with glycyrrhetinic acid as internal standard. Liver celastrol concentrations were 32.60 ± 8.21 pg/mg and 40.52 ± 15.6 pg/mg, 30 and 120 min after injection, respectively. We found 4.70 ± 0.31 pg/mg celastrol after 30 min, and 16.22 ± 3.33 pg/mg after 120 min in whole brain lysates, and detectable amounts in the hypothalamus. These results corroborate the validity of our methodology, demonstrate the accumulation of celastrol in the brain of mice injected intraperitoneally with a dose of 100 μg/kg, and confirm the CNS as possible site of action for the weight lowering properties of celastrol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2020.104713 | DOI Listing |
Phytomedicine
January 2025
Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. Electronic address:
Background: Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis.
View Article and Find Full Text PDFPharm Biol
December 2025
Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
Context: Celastrol, acknowledged as a prominent exemplar of the potential for transforming traditional medicinal compounds into contemporary pharmaceuticals, has garnered considerable attention owing to its extensive pharmacological activities. The increasing volume of publications concerning celastrol highlights its importance in current scientific inquiry. Despite the growing interest in this compound, a bibliometric analysis focused on this subject remains to be undertaken.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China. Electronic address:
Acetohydroxy acid synthase (AHAS) is a key enzyme that catalyzes the synthesis of branched-chain amino acids, which is indispensable for the survival and growth of Mycobacterium tuberculosis (Mtb). Aim to discover new AHAS inhibitors from natural products, here we performed computer assistant target-based screening for Mtb-AHAS inhibitors using Discovery Studio on TCMSP and SELLECK libraries. Mtb-AHAS structure was first simulated and verified for docking, and 80 compounds with top LIBDOCK and CDDOCK scores were obtained.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
One of the most common microvascular effects of diabetes mellitus (DM) that may result in end-stage renal failure is diabetic kidney disease (DKD). Current treatments carry a substantial residual risk of disease progression regardless of treatment. By modulating various molecular targets, pentacyclic triterpenoid celastrol has been found to possess curative properties in the treatment of diabetes and other inflammatory diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!