SO Electrocatalytic Oxidation Properties of Pt-Ru/C Bimetallic Catalysts with Different Nanostructures.

Langmuir

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China.

Published: March 2020

Electrocatalytic oxidation of SO has been applied in many fields, and electrocatalyst is the focus of the research. Platinum-based electrocatalysts are the hot spot in this reaction. Although the properties of these materials have been optimized to a certain extent, there is still room for improvement in activity and long-term durability. In light of this, two kinds of carbon-supported Pt-Ru bimetallic electrocatalysts (PtRu/C alloy catalyst and Ru@Pt/C core-shell catalyst) were prepared by the microwave reduction method. The experiments demonstrate that the enhancement in the activity of bimetallic catalysts originates from the electronic effect and bifunctional effect between Pt and Ru. Bimetallic catalyst contains a large number of RuOH, which promotes the reaction. Because of the high Pt utilization, Ru@Pt/C catalyst with the Pt shell has a higher performance than alloy catalyst. The unit Pt mass activity of PtRu/C and Ru@Pt/C is 1.73 and 2.43 times that of Pt/C, respectively. Ru@Pt/C exhibits excellent stability in the high acid environment and is a promising SO electrocatalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b03286DOI Listing

Publication Analysis

Top Keywords

electrocatalytic oxidation
8
bimetallic catalysts
8
alloy catalyst
8
catalyst
5
oxidation properties
4
properties pt-ru/c
4
bimetallic
4
pt-ru/c bimetallic
4
catalysts nanostructures
4
nanostructures electrocatalytic
4

Similar Publications

Weakening Pd─O Bonds by an Amorphous Pd Layer to Promote Electrocatalysis.

Small

January 2025

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.

View Article and Find Full Text PDF

Tungsten Carbide/Tungsten Oxide Catalysts for Efficient Electrocatalytic Hydrogen Evolution.

Molecules

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (WC) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of WC catalysts is inevitable.

View Article and Find Full Text PDF

In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE.

View Article and Find Full Text PDF

Three-dimensional CeO Nanosheets/CuO nanoflowers p-n heterostructure supported on carbon cloth as electrochemical sensor for sensitive nitrite detection.

Anal Chim Acta

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Nitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.

View Article and Find Full Text PDF

The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!