The integration of synergic hydrogen bond donors and nucleophilic anions that facilitates the ring-opening of epoxide is an effective way to develop an active catalyst for the cycloaddition of CO with epoxides. In this work, a new heterogeneous catalyst for the cycloaddition of epoxides and CO into cyclic carbonates based on dual hydroxyls-functionalized polymeric phosphonium bromide (PQPBr-2OH) was presented. Physicochemical characterizations suggested that PQPBr-2OH possessed large surface area, hierarchical pore structure, functional hydroxyl groups, and high density of active sites. Consequently, it behaved as an efficient, recyclable, and metal-free catalyst for the additive and solvent free cycloaddition of epoxides with CO. Comparing the activity of PQPBr-2OH with that of the reference catalysts based on mono and non-hydroxyl functionalized polymeric phosphonium bromides suggested that hydroxyl functionalities in PQPBr-2OH showed a critical promotion effect on its catalytic activity for CO conversion. Moreover, PQPBr-2OH proved to be quite robust and recyclable. It could be reused at least ten times with only a slight decrease of its initial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182888PMC
http://dx.doi.org/10.3390/polym12030596DOI Listing

Publication Analysis

Top Keywords

catalyst cycloaddition
12
cycloaddition epoxides
12
hydroxyl groups
8
cyclic carbonates
8
polymeric phosphonium
8
pqpbr-2oh
5
phosphonium-based porous
4
porous ionic
4
ionic polymer
4
polymer hydroxyl
4

Similar Publications

Chitosan-Based Porous Carbon Materials with Built-In Lewis Acid Boron Sites for Enhanced CO Capture and Conversion via an Electron-Inducing Effect.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.

Electron-induced effects, which are prevalent in adsorption and heterogeneous catalytic reactions, can significantly influence the state and uptake of adsorbates. Here, we demonstrate the in situ doping of electron-deficient boron into the backbone of chitosan-based porous carbon materials. Despite a reduction in specific surface area, the resulting boron-doped porous carbons (NBPCs) exhibit an enhanced CO adsorption performance, with sample NBPC-10 achieving CO adsorption capacities of 7.

View Article and Find Full Text PDF

Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.

View Article and Find Full Text PDF

This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.

View Article and Find Full Text PDF

Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give -heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products.

View Article and Find Full Text PDF

The present work focuses on a newly synthesized pyrazolo[3,4-]pyridine prepared by formal [3 + 3] cycloaddition using copper(II) acetylacetonate as the catalyst; efficient and effective mild reactions with high yields were obtained using this method. The synthesized compounds were identified by FT-IR, H and C NMR, and mass spectra (/) analyses. The compounds () were screened for several in vitro and in silico activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!