Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084487 | PMC |
http://dx.doi.org/10.3390/ijms21051793 | DOI Listing |
Biomed Eng Online
June 2024
KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.
Background: Functional electrical stimulation (FES) is a rehabilitation technique that enables functional improvements in patients with motor control impairments. This study presents an original design and prototyping method for a smart sleeve for FES applications. The article explains how to integrate a carbon-based dry electrode into a textile structure and ensure an electrical connection between the electrodes and the stimulator for effective delivery of the FES.
View Article and Find Full Text PDFNat Commun
April 2024
Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
Moisture-electric generators (MEGs) has emerged as promising green technology to achieve carbon neutrality in next-generation energy suppliers, especially combined with ecofriendly materials. Hitherto, challenges remain for MEGs as direct power source in practical applications due to low and intermittent electric output. Here we design a green MEG with high direct-current electricity by introducing polyvinyl alcohol-sodium alginate-based supramolecular hydrogel as active material.
View Article and Find Full Text PDFBiomed Eng Online
January 2024
KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
Background: Functional electrical stimulation (FES) can be used in rehabilitation to aid or improve function in people with paralysis. In clinical settings, it is common practice to use transcutaneous electrodes to apply the electrical stimulation, since they are non-invasive, and can be easily applied and repositioned as necessary. However, the current electrode options available for transcutaneous FES are limited and can have practical disadvantages, such as the need for a wet interface with the skin for better comfort and performance.
View Article and Find Full Text PDFPolymers (Basel)
December 2023
Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China.
Energy conservation in buildings is paramount, especially considering that glass accounts for 50% of energy consumption. The solar heat gain coefficient (SHGC) of glass is a critical energy-saving index for transparent structures. However, the fixed SHGC of ordinary glass makes it difficult to provide both summer shading and winter heating.
View Article and Find Full Text PDFAdv Mater
April 2022
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
The efficient motility of invertebrates helps them survive under evolutionary pressures. Reconstructing the locomotion of invertebrates and decoupling the influence of individual basic motion are crucial for understanding their underlying mechanisms, which, however, generally remain a challenge due to the complexity of locomotion gaits. Herein, a magnetic soft robot to reproduce midge larva's key natural swimming gaits is developed, and the coupling effect between body curling and rotation on motility is investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!