Alkali Activation of Copper and Nickel Slag Composite Cementitious Materials.

Materials (Basel)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116023, China.

Published: March 2020

Alkali-activated copper and nickel slag cementitious materials (ACNCMs) are composite cementitious materials with CNS (copper and nickel slag) as the main materials and GGBFS (ground-granulated blast-furnace slag) as a mineral admixture. In this paper, the activity indexes of CNS with different grinding times were studied using CNS to replace a portion of cement. NaOH, NaSO, and NaSiO activators were used to study the alkaline solution of the CNS glass phase. The effects of the fineness of CNS and the type of activator on the hydration of ACNCMs were investigated via physical/mechanical grinding and chemical activation. The hydration products of ACNCMs were analyzed via XRD, SEM, FT-IR, TG, and MIP. The results of the study revealed that the activity indexes of CNS ground with different grinding times (10, 30 and 50 min) were 0.662, 0.689, and 0.703, respectively. When NaSiO was used as the activator, the glass phase dissolved the most Si, Al, and Ca, and the respective concentrations in the solution were found to be 2419, 39.55, and 3.38 mg/L. Additionally, the hydration products of ACNCMs were found to have a 28-day compressive strength of up to 84 MPa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084995PMC
http://dx.doi.org/10.3390/ma13051155DOI Listing

Publication Analysis

Top Keywords

copper nickel
12
nickel slag
12
cementitious materials
12
composite cementitious
8
activity indexes
8
indexes cns
8
grinding times
8
glass phase
8
hydration products
8
products acncms
8

Similar Publications

Hidden Threat in Turbid Waters: Quantifying and Modeling the Bioaccumulation and Risks of Particulate Metals to Clams.

Environ Pollut

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

This study investigates the seasonal variations in the elemental composition of five economically valuable fish species from Bozcaada, North Aegean: red seabream (), gilthead seabream (), saddled seabream (), white seabream (), and common dentex (), with a focus on both essential minerals and toxic metals. Fish samples ( = 10 per species per season) were collected across four seasons, and their weights and lengths were recorded. The concentrations of elements such as calcium, potassium, magnesium, phosphorus, copper, iron, manganese, zinc, chromium, nickel, selenium, cadmium, and mercury were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Contamination and ecological risk of heavy metals in sediments of urban rivers in a typical economic development zone, southern China.

J Environ Sci (China)

July 2025

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

Urban rivers are one of the main water sources for local residents. However, the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers, which posed harmful impact on human health and ecosystem. In this study, 134 sediment samples were collected from urban rivers in a typical Economic and Technological Development Zone (ETDZ) to evaluate the contamination status, ecological risk, biotoxicity, and potential source of 8 heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), plumbum (Pb), and zinc (Zn).

View Article and Find Full Text PDF

Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!