The specific recognition between DNA and single-walled carbon nanotubes (SWCNTs) has enabled wide applications, especially in the chiral sorting of SWCNTs. However, the molecular recognition mechanism has not been fully understood. In our work, various DNA-SWCNT dispersions were prepared by the ultrasonic dispersion method, and characterized by UV absorption spectroscopy, fluorescence emission spectroscopy, zeta potential measurement, SDBS exchange kinetics and computer simulation. The effect of DNA sequence on the structure and properties of hybrid molecules was analyzed. Data analysis showed that DNA with specific recognition had better dispersion quality of the corresponding SWCNT, which means that higher content of monodispersed SWCNTs was obtained. The high-quality dispersion of the DNA-SWCNT pair was attributed to the stronger binding between DNA and SWCNT, resulting in a tighter conformation of DNA on the SWCNT surface and a larger zeta potential of DNA-SWCNT hybrids. Consequently, DNA-SWCNT dispersions of the recognition pair exhibited better stability against salt and stronger fluorescence emission intensity. However, the correlation between specific recognition and DNA coverage on SWCNT was not observed. This work gives more insight into the recognition mechanism between DNA and SWCNTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab7de3 | DOI Listing |
Chin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:
Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
School of Pharmacy, Xi'an Medical University, Xi'an, 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an, 710021, China. Electronic address:
In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China.
DNA-decorated hapten (DDH)-based immunoassays have emerged, demonstrating supreme advantages in sensing applications because of their excellent sensitivity, specificity, and reliability. DDH combines both a recognition element (hapten) and a signal transduction element (DNA portion) with its highly programmable DNA structure enabling the trigger of signal transduction following a recognition event, thereby introducing a novel signal transduction mechanism to immunoassays. In this review, we provide a critical overview of recent research in the DDH-based immunoassays, which are designed to detect specific small molecules and antibodies.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Pathology and Laboratories, University Hospital Fundación Santa Fe de Bogotá, Bogotá, DC, Colombia.
Background: Adenoid cystic carcinoma of the breast is a rare subtype, constituting less than 3.5% of primary breast carcinomas. Despite being categorized as a type of triple-negative breast cancer, it generally has a favorable prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!