Injection of aqueous fluids into reservoirs as an enhanced oil recovery (EOR) tool has been of great interest in petroleum engineering. EOR using viscous polymer solutions improves the volumetric sweep efficiency. However, significant polymer adsorption on reservoir rock surfaces is one of the greatest challenges in polymer-flooding EOR. We have synthesized and characterized five zwitterionic copolymers and studied their static adsorption on limestone surfaces in seawater at high temperatures and salinities. Our results indicate that polymer adsorption directly correlates to a small percentage of functional co-monomers on the polymer backbone. One particular copolymer shows negligible static adsorption on limestone surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307833 | PMC |
http://dx.doi.org/10.1021/acsami.0c02247 | DOI Listing |
Biomacromolecules
January 2025
Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Shandong Ocean Pipe Technology Co., Ltd, Dezhou 253300, China.
Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China. Electronic address:
Bacterial infections and inflammation severely impede wound healing. Here, we developed a zwitterionic hydrogel incorporating MOF/GOx for pH-responsive, controlled drug release. The multifunctional hydrogel embedded with MOF/GOx was successfully prepared through the Schiff base reaction between the copolymer poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(4-formylphenyl methacrylate)] (PMF) and the branched polyethylenimine (PEI) modified by the zwitterionic monomer ((4-hydroxyphenyl)sulfonyl)(4-(trimethylammonio)butanoyl)amide (AB), which possessed excellent injectable and self-healing ability, a highly sensitive and reversible responsiveness to pH changes, and good biocompatibility.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFLab Chip
January 2025
Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!