Searching for compounds that inhibit the growth of photosynthetic organisms highlighted a prominent effect at micromolar concentrations of the nitroheteroaromatic thioether, 2-nitrothiophene, applied in the light. Since similar effects were reminiscent to those obtained also by radicals produced under excessive illumination or by herbicides, and in light of its redox potential, we suspected that 2-nitrothiophene was reduced by ferredoxin, a major reducing compound in the light. In silico examination using docking and tunneling computing algorithms of the putative interaction between 2-nitrothiophene and cyanobacterial ferredoxin has suggested a site of interaction enabling robust electron transfer from the iron-sulfur cluster of ferredoxin to the nitro group of 2-nitrothiophene. ESR and oximetry analyses of cyanobacterial cells (Anabaena PCC7120) treated with 50 μM 2-nitrothiophene under illumination revealed accumulation of oxygen radicals and peroxides. Gas chromatography mass spectrometry analysis of 2-nitrothiophene-treated cells identified cytotoxic nitroso and non-toxic amino derivatives. These products of the degradation pathway of 2-nitrohiophene, which initializes with a single electron transfer that forms a short-live anion radical, are then decomposed to nitrate and thiophene, and may be further reduced to a nitroso hydroxylamine and amino derivatives. This mechanism of toxicity is similar to that of nitroimidazoles (e.g. ornidazole and metronidazole) reduced by ferredoxin in anaerobic bacteria and protozoa, but differs from that of ornidazole in planta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BCJ20190830 | DOI Listing |
Bioresour Technol
December 2024
Bioprocesses Department, Instituto Politécnico Nacional, P.O. Box 07340, Mexico City, Mexico. Electronic address:
A biohydrogen and polyhydroxyalkanoates(PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States.
Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of , the most abundant phototroph on Earth by mass.
View Article and Find Full Text PDFFront Microbiol
December 2024
Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China.
This study probes into the unique metabolic responses of (), a key player in the gut microbiota, when it metabolizes rhamnose rather than typical carbohydrates. Known for its predominant role in the Bacteroidetes phylum, efficiently breaks down poly- and mono-saccharides into beneficial short-chain fatty acids (SCFAs), crucial for both host health and microbial ecology balance. Our research focused on how this bacterium's SCFA production differ when utilizing various monosaccharides, with an emphasis on the oxidative stress responses triggered by rhamnose consumption.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
The present study aimed to investigate the impact of progressive drought stress (100%, 75%, 50%, and 25% of field capacity) on photosynthetic light reactions of tomato plants. The imposed drought caused a gradual reduction in leaf RWC leading to a decline in pigment concentration and growth indices. Significant alteration in the OJIP fluorescence transient curves and the formation of specific fluorescence bands (L, K, J, H, and G) gradually increased as drought severity increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!