Identification of the differentially expressed protein biomarkers in rat blood plasma in response to gamma irradiation.

Int J Radiat Biol

China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China.

Published: June 2020

Simple, rapid and high-throughput dose assessment is critical for clinical diagnosis, treatment and emergency intervention in a large-scale radiological accident. The goal of this study is to screen and identify new ionizing radiation-responsive protein biomarkers in rat plasma. Sprague-Dawley rats were exposed to single doses of 0, 1, 3, 5 Gy of Cobalt-60 γ-rays total body irradiation at a dose rate of 1 Gy/min. The tandem mass tag labeling (TMT) combined with liquid chromatography mass spectrometry (LC-MS/MS) approach was used to screen the differentially expressed proteins in rat plasma collected at 1, 3, 5 and 7 days post-irradiation. Bioinformatics analysis was conducted to explore the biological functions of these proteins. The expression levels of candidate radiation-sensitive protein biomarkers were confirmed using enzyme-linked immune-sorbent assay (ELISA). A total of 503 differentially expressed proteins were identified. Most of these proteins were implicated in immune response, phagocytosis and signal transduction following ionizing radiation. Five up-regulated proteins including alpha-2-macroglobulin (A2m), chromogranin-A (CHGA), glutathione pertidase 3 (GPX3), clusterin (Clu) and ceruloplasmin (Cp) were selected for ELISA analysis. It was found that the expression levels of A2m, CHGA and GPX3 protein were increased in a dose-dependent manner at 1, 3 and 5 days after irradiation. Proteomics analysis revealed radiation-induced differentially expressed proteins in rat plasma. Our results suggested that A2m, CHGA, GPX3 protein expressions alterations in rat plasma may have potential as biomarkers to evaluate radiation exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2020.1739775DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
rat plasma
16
protein biomarkers
12
expressed proteins
12
biomarkers rat
8
proteins rat
8
expression levels
8
a2m chga
8
chga gpx3
8
gpx3 protein
8

Similar Publications

Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.

Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.

View Article and Find Full Text PDF

Objectives: Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD), even though the molecular mechanisms underlying its efficacy remain largely unclear. This study aimed, for the first time, to analyze plasma levels of miRNAs, key regulators of gene expression, in TRD patients undergoing ECT to investigate potential changes during treatment and their associations with symptom improvement.

Methods: The study involved 27 TRD patients who underwent ECT.

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!