A one-pot, sequential process that combines a trans-selective hydroalumination of propargyl alcohols and amines with a copper- or silver-catalyzed carboxylation reaction using carbon dioxide, followed by an acid-mediated intramolecular condensation step, led to the formation of a wide range of α,β-unsaturated γ-butyrolactones and lactams.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.0c00513DOI Listing

Publication Analysis

Top Keywords

propargyl alcohols
8
alcohols amines
8
carbon dioxide
8
one-pot synthesis
4
synthesis αβ-unsaturated
4
αβ-unsaturated γ-lactones
4
γ-lactones lactams
4
lactams sequential
4
sequential -hydroalumination
4
-hydroalumination catalytic
4

Similar Publications

Oxometallate-Based Ionic Liquid Catalyzed CO-Promoted Hydration of Propargylic Alcohols for α-Hydroxy Ketones Synthesis.

Int J Mol Sci

December 2024

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze this reaction individually under atmospheric CO pressure, volatile organic solvents, and additives.

View Article and Find Full Text PDF

A new sequential deprotonation strategy of dimethyl sulfoxide (DMSO) and propargyl alcohol in the presence of a base was developed for the generation of the α-hydroxyl carbanion, which enables rapid and controllable access to a wide range of valuable highly functionalized furans in one pot from alkynes and aldehydes under transition-metal- and additive-free conditions. Preliminary mechanistic studies revealed the crucial role of the base and DMSO. More importantly, deuterium labeling experiments confirmed the formation of the α-hydroxyl carbanion.

View Article and Find Full Text PDF

Pd/Brønsted Acid Co-catalyzed Dehydrative Coupling of Propargylic Alcohols with Diarylphosphine Oxides.

Org Lett

January 2025

Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China.

An efficient dehydrative coupling of propargylic alcohols with diarylphosphine oxides to construct tetrasubstituted allenylphosphoryl compounds in the presence of a Pd/Brønsted acid co-catalyst has been developed. As a benefit from the use of a Brønsted acid, this reaction could perform under mild conditions with excellent yields, accommodating a wide range of functional groups. The potential utility of this method has also been demonstrated.

View Article and Find Full Text PDF

Photoinduced SF degradation for deoxyfluorination of propargyl alcohols.

Org Biomol Chem

December 2024

National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Deoxyfluorination is one of the most practical methods for introducing fluorine atoms, since hydroxyl groups are commonly found in organic small molecules. Traditional fluorination methods often rely on hazardous fluorinating reagents. Herein, we report the deoxyfluorination of propargyl alcohols using sulfur hexafluoride (SF) as a safe fluorinating agent under photocatalytic conditions.

View Article and Find Full Text PDF

Catalytic Asymmetric Oxidative Coupling between C(sp)-H Bonds and Carboxylic Acids.

J Am Chem Soc

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.

The direct enantioselective functionalization of C(sp)-H bonds in organic molecules could fundamentally transform the synthesis of chiral molecules. In particular, the enantioselective oxidation of these bonds would dramatically change the production methods of chiral alcohols and esters, which are prevalent in natural products, pharmaceuticals, and fine chemicals. Remarkable advances have been made in the enantioselective construction of carbon-carbon and carbon-nitrogen bonds through the C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!