Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionnp6sivnocdn2c0vhti8q68a7s7jbn4um): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
BRD4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to nonhomologous cysteine residues within the -terminal BRD4 bromodomain (BRD4-BD2), we performed a midthroughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify BRD4. Subsequent mass spectrometry, NMR, and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to BRD4 among human bromodomains. This site is orthogonal to the BRD4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays nor an acetylated histone peptide in AlphaScreen assays. Finally, we tethered our top-performing covalent fragment to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace BRD4 from chromatin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271629 | PMC |
http://dx.doi.org/10.1021/acschembio.0c00058 | DOI Listing |
Protein Sci
November 2024
Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
JACS Au
September 2024
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.
We present the development of , a structurally novel PROTAC targeting the CREB-binding protein (CBP) and E1A-associated protein (EP300)-two homologous multidomain enzymes crucial for enhancer-mediated transcription. The design of was based on the crystal structure of an in-house bromodomain (BRD) inhibitor featuring a 3-methyl-cinnoline acetyl-lysine mimic acetyl-lysine mimic discovered by high-throughput fragment docking. Our study shows that, despite its modest binding affinity to CBP/EP300-BRD, 's remarkable protein degradation activity stems from its good cooperativity, which we demonstrate by the characterization of its ternary complex formation both and .
View Article and Find Full Text PDFChemMedChem
October 2024
Department of Biochemistry, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany.
Sirtuin 6 (Sirt6), an NAD-dependent deacylase, has emerged as a promising target for aging-related diseases and cancer. Advancing the medicinal chemistry of Sirt6 modulators is crucial for the development of chemical probes aimed at unraveling the intricate biological functions of Sirt6 and unlocking its therapeutic potential. A proprietary DNA-encoded library yielded Sirt6 inhibitor 2-Pr, displaying remarkable inhibitory activity and isoform-selectivity, and featuring a chemical structure distinct from reported Sirt6 modulators.
View Article and Find Full Text PDFJ Med Chem
June 2024
GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail -acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 () that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration.
View Article and Find Full Text PDFDrug Metab Dispos
July 2024
Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
Cantharidin is a terpenoid from coleoptera beetles. Cantharidin has been used to treat molluscum contagiosum and some types of tumors. Cantharidin is highly toxic, and cantharidin poisoning and fatal cases have been reported worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!