Solar-steam generation is one of the most promising technologies to mitigate the issue of clean water shortage using sustainable solar energy. Photothermal aerogels, especially the three-dimensional (3D) graphene-based aerogels, have shown unique merits for solar-steam generation, such as lightweight, high flexibility, and superior evaporation rate and energy efficiency. However, 3D aerogels require much more raw materials of graphene, which limits their large-scale applications. In this study, 3D photothermal aerogels composed of reduced graphene oxide (RGO) nanosheets, rice-straw-derived cellulose fibers, and sodium alginate (SA) are prepared for solar-steam generation. The use of rice straw fibers as skeletal support significantly reduces the need for the more expensive RGO by 43.5%, turning the rice straw biomass waste into value-added materials. The integration of rice straw fibers and RGO significantly enhances the flexibility and mechanical stability of the obtained photothermal RGO-SA-cellulose aerogel. The photothermal aerogel shows a strong broad-band light absorption of 96-97%. During solar-steam generation, the 3D photothermal aerogel effectively decreases the radiation and convection energy loss while enhancing energy harvesting from the environment, leading to an extremely high evaporation rate of 2.25 kg m h, corresponding to an energy conversion efficiency of 88.9% under 1.0 sun irradiation. The salinity of clean water collected during the evaporation of real seawater is only 0.37 ppm. The materials are environmentally friendly and cost-effective, showing great potential for real-world desalination applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c01707 | DOI Listing |
Mater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.
View Article and Find Full Text PDFChemosphere
February 2025
School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea. Electronic address:
In the field of solar steam generation, hydrogels with interfacial evaporation configurations stand as a promising candidate for solar evaporators. Hydrogel-based photothermal materials provide excellent hydration channels for supplying water to an evaporative layer due to their porous structure and hydrophilic nature. This work proposed a facile and in-situ fabrication of sodium alginate hydrogel incorporated with cellulose nanocrystals and polypyrrole as an effective photothermal material.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia.
Interfacial solar steam generation (ISSG) employed for seawater desalination and wastewater purification shows great promise to alleviate global freshwater scarcity. However, simultaneous optimization of water transfer direction in a cost-effective and reliable ISSG to balance thermal localization, salt accumulation, and resistance to oilfouling represents a rare feat. Herein, inspired by seabird beaks for unidirectional water transfer, eco-friendly and cost-effective plant extracts, sodium alginate, and tannic acid, are selected for crafting an innovative Sodium Alginate-Tannic Acid Hemispheric Evaporator (STHE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!