Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwaa020DOI Listing

Publication Analysis

Top Keywords

monocyte-to-macrophage transition
16
human monocyte-to-macrophage
8
innate immune
8
glycan remodelling
8
cd14+ monocytes
8
core fucosylation
8
high-resolution longitudinal
4
longitudinal o-glycoprofiling
4
o-glycoprofiling human
4
monocyte-to-macrophage
4

Similar Publications

Background: There is significant interest in understanding the nature of the inflammatory response and its role in Alzheimers disease (AD) pathophysiology. Immune cell phenotypes and their key pathway activation by AD stage is unclear. We therefore evaluated immune cell phenotypes in the cerebrospinal fluid (CSF) and their transcriptional profile comparing AD-dementia, Mild Cognitive Impairment (MCI)-AD and normal cognition controls using transcriptomics.

View Article and Find Full Text PDF

Notch signaling regulates macrophage-mediated inflammation in metabolic dysfunction-associated steatotic liver disease.

Immunity

October 2024

Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Inserm U1015, Gustave Roussy, Villejuif 94800, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Republic of Singapore; SingHealth Duke-NUS Academic Medical Centre, Translational Immunology Institute, Singapore 169856, Republic of Singapore. Electronic address:

The liver macrophage population comprises resident Kupffer cells (KCs) and monocyte-derived macrophages with distinct pro- or anti-inflammatory properties that affect the severity and course of liver diseases. The mechanisms underlying macrophage differentiation and functions in metabolic dysfunction-associated steatotic liver disease and/or steatohepatitis (MASLD/MASH) remain mostly unknown. Using single-cell RNA sequencing (scRNA-seq) and fate mapping of hepatic macrophage subpopulations, we unraveled the temporal and spatial dynamics of distinct monocyte and monocyte-derived macrophage subsets in MASH.

View Article and Find Full Text PDF

Macrophages are required for our body's development and tissue repair and protect against microbial attacks. We previously reported a crucial role for regulation of mRNA 3'-end cleavage and polyadenylation (C/P) in monocyte to macrophage differentiation. The CFIm25 subunit of the C/P complex showed a striking increase upon differentiation of monocytes with Phorbol Myristate Acetate, suggesting that it promotes this process.

View Article and Find Full Text PDF
Article Synopsis
  • The text describes how a specific bacterium infects the upper airways of humans and uses toxins (PT and CyaA) to weaken the host's immune response.
  • CyaA rapidly disrupts immune cell function by increasing cAMP levels, which inhibits the differentiation of inflammatory monocytes into effective macrophages and reduces their ability to acquire essential nutrients.
  • Additionally, the study reveals that the effects of CyaA can be mitigated by a histone deacetylase inhibitor, suggesting that this toxin triggers epigenetic changes that help the bacterium evade the immune system and proliferate in the host's airway.
View Article and Find Full Text PDF

Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity comorbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high-fat diet (HFD)-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!