Inertial focusing of particles in serpentine microfluidic chips has been studied over the past decade. Here, a study to investigate the particle inertial focusing in 3D-printed serpentine microfluidic chips was conducted by simulation and practice. A test model was designed and printed using four commercial 3D-printers. Commercial inkjet 3D-printers have shown the best printing channel resolution of up to 0.1 mm. The force analysis of particle inertial focusing in 3D-printed microfluidic chips with large cross-sectional channels was discussed. Important parameters such as the channel curvature and flow velocity were studied by simulation. The optimal channel curvature and flow velocity are 5.9 mm and 480 μL min (Re: 29.8 and De: 4.49) in the 3D-printed microfluidic chips with 0.2 mm × 0.4 mm cross-sectional channels. Under these optimal conditions, particles were well focused in the middle of the channel. Furthermore, two kinds of cancer cells were focused in these 3D-printed serpentine microfluidic chips under the optimal conditions. We envision that this improved study would provide helpful insights into simulating particle inertial focusing in 3D-printed microfluidic chips and promoting 3D-printed microfluidic chips to commercial production.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm00084aDOI Listing

Publication Analysis

Top Keywords

microfluidic chips
32
inertial focusing
20
particle inertial
16
focusing 3d-printed
16
serpentine microfluidic
16
3d-printed microfluidic
16
3d-printed serpentine
12
simulation practice
8
microfluidic
8
chips
8

Similar Publications

Inertial microfluidics, as an efficient method for the manipulation of micro-/nanoparticles, has garnered significant attention due to its advantages of high throughput, structural simplicity, no need for external fields, and sheathless operation. Common structures include straight channels, contraction-expansion array (CEA) channels, spiral channels, and serpentine channels. In this study, we developed a CEA channel embedded with hook-shaped microstructures to modify the characteristics of vortices.

View Article and Find Full Text PDF

In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut.

View Article and Find Full Text PDF

Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model.

Micromachines (Basel)

December 2024

Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China.

The rapid advancement of artificial intelligence is transforming the computer-aided design of microfluidic chips. As a key component, microfluidic mixers are widely used in bioengineering, chemical experiments, and medical diagnostics due to their efficient mixing capabilities. Traditionally, the simulation of these mixers relies on the finite element method (FEM), which, although effective, presents challenges due to its computational complexity and time-consuming nature.

View Article and Find Full Text PDF

'Ship-in-a-Bottle' Integration of pH-Sensitive 3D Proteinaceous Meshes into Microfluidic Channels.

Nanomaterials (Basel)

January 2025

Innovative Laser Processing Group, Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Ibaraki, Japan.

Microfluidic sensors incorporated onto chips allow sensor miniaturization and high-throughput analyses for point-of-care or non-clinical analytical tools. Three-dimensional (3D) printing based on femtosecond laser direct writing (fs-LDW) is useful for creating 3D microstructures with high spatial resolution because the structures are printed in 3D space along a designated laser light path. High-performance biochips can be fabricated using the 'ship-in-a-bottle' integration technique, in which functional microcomponents or biomimetic structures are embedded inside closed microchannels using fs-LDW.

View Article and Find Full Text PDF

Microspectrometer-Enabled Real-Time Concentration Monitoring in the Microfluidic Protein Enrichment Chip.

Biosensors (Basel)

December 2024

Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan.

This study presents a novel microspectrometer-integrated microfluidic system for real-time protein concentration monitoring. The device employs electrokinetic principles for efficient protein preconcentration in a PDMS and Nafion film channel. Using FITC-labeled BSA as a model protein, the system demonstrated a linear correlation between protein concentration and absorbance at 491 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!