The pre-mounted dry transcatheter aortic valve implantation (TAVI) valve is a new technology in the development of biological heart valves. Dry valves do not need to be placed in special preservation solution and can be opened and used immediately, meeting the needs of clinical emergency valve implantation. However, current biological valves obtained by simple air drying cannot be unfolded quickly. In addition, the crimping process leads to structural damage to the valve fiber microstructure, reducing the service life of biological valves. Furthermore, current biological valves still have problems such as calcification, endothelialization difficulty, and immune rejection. In this study, a poly(ethylene glycol)methacrylate (PEGMA) hydrogel hybrid pericardium loaded with REDV was developed. The PEGMA monomer solution can penetrate the space of the pericardium. REDV was loaded into the PEGMA hydrogel, which was hybridized with pericardium via in situ polymerization. The results showed improved unfolding properties, less mechanical damage after crimping, and improved endothelialization potential of the biological valve. Thus, REDV-loaded PEGMA hydrogel hybrid pericardium is a promising approach for obtaining pre-mounted dry TAVI valves with enhanced endothelialization properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb00879aDOI Listing

Publication Analysis

Top Keywords

pegma hydrogel
16
pre-mounted dry
12
hydrogel hybrid
12
hybrid pericardium
12
biological valves
12
dry tavi
8
tavi valve
8
improved endothelialization
8
endothelialization potential
8
redv-loaded pegma
8

Similar Publications

We investigate the link between the internal microstructure of poly(-isopropylacrylamide)-poly(ethylene glycol) methyl ether methacrylate (PNIPAM-PEGMA) microgels, their bulk moduli and the rheological response and structural arrangement in dense suspensions. The low degree of crosslinking combined with the increased hydrophilicity induced by the presence of PEGMA results in a diffuse, star-like density profile of the particle and very low values of the bulk modulus in dilute conditions, as determined by small angle neutron scattering (SANS). The ultrasoft nature of the particle is reflected in the changes of the structural arrangement in dense suspensions, which evidence a strong deswelling and a sharp rise of the bulk modulus at moderate packing fractions.

View Article and Find Full Text PDF

Thermoresponsive degradable hydrogels with renewable surfaces for protein removal.

Biomater Sci

December 2024

Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.

Most biological materials used in the body undergo protein adsorption, which alters their biological functions. Previously, we introduced surface-degradable hydrogels as adsorbed protein-removing surfaces. However, only a few surface renewals were possible because of the hydrophilic nature of the hydrogels, which accelerated their degradation.

View Article and Find Full Text PDF

Dual-network hydrogel capsules for controlled molecular transport via pH and temperature responsiveness.

J Colloid Interface Sci

January 2025

Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand. Electronic address:

We have developed innovative core-shell hydrogel capsules with a dual-network shell structure designed for precise control of molecular transport in response to external stimuli such as pH and temperature. The capsules were fabricated using a combination of microfluidic electrospray techniques and water-in-water (w/w) core-shell droplets templating. The primary network of the shell, calcium alginate (Ca-Alg), with a pK around 3.

View Article and Find Full Text PDF

Acrylate-Based PEG Hydrogels with Ultrafast Biodegradability for 3D Cell Culture.

Biomacromolecules

September 2024

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Poly(ethylene glycol) (PEG)-based hydrogels are particularly challenging to degrade, which hinders efficient cell harvesting within the gel matrix. Here, highly branched copolymers of PEG methyl ether acrylate (PEGMA) and disulfide diacrylate (DSDA) (PEG-DS) with short primary chains and multiple pendent vinyl groups were synthesized by a "vinyl oligomer combination" approach. PEG-DS readily cross-links with thiolated gelatin (Gel-SH) to form hydrogels.

View Article and Find Full Text PDF

In this work, comb homopolymers as well as comb-type copolymers of thermo-responsive oligo(ethylene glycol methyl ether methacrylate)s, OEGMAs, with various chain lengths (DEGMA, PEGMA, and PEGMA containing 2, 9, or 19 repeating ethylene glycol units, respectively) were synthesized through free radical (co)polymerization. For the copolymers, either the functional hydrophobic glycidyl methacrylate (GMA) or the inert hydrophilic N,N-dimethylacrylamide (DMAM) were selected as comonomers. The self-assembly and thermo-responsive behavior of the products was investigated through Nile Red fluorescence probing, turbidimetry, and dynamic light scattering (DLS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!