We report on the design and testing of new graphite and graphene oxide-based extended π-conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle-functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform-sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon-supported iron oxide nanoparticulate pre-catalysts were tested, upon hydrogen reduction for the conversion of CO to CO as well as for the selective formation of CH and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide-supported iron oxide pre-catalyst converted CO into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3-dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ-FeO decorated graphene oxide-based pre-catalyst displays fairly constant activity up to 405 °C, it was found by GC-MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron-functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube-based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non-covalent interactions in the iron oxide-graphene oxide networks, which could inform the design of nano-materials with performance in future sustainable catalysis applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020623PMC
http://dx.doi.org/10.1002/open.201900368DOI Listing

Publication Analysis

Top Keywords

graphite oxide
16
graphene oxide
16
oxide
11
graphene
9
decorated graphene
8
atmospheric pressure
8
graphene oxide-based
8
iron oxide
8
catalytic activity
8
activity graphene
8

Similar Publications

Microbe-mediated synthesis of defect-rich CeO nanoparticles with oxidase-like activity for colorimetric detection of L-penicillamine and glutathione.

Nanoscale

January 2025

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.

To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO nanoparticles (CeO NPs) with multiple defects (Ce defects, oxygen vacancies and carbon defects) were synthesized the culture filtrate of the extremely radioresistant bacterium R12 ( R12). The as-prepared CeO NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of HO.

View Article and Find Full Text PDF

Development of HRP-assisted rGO-FET biosensors for high-precision measurement of serological steroid hormones.

Anal Chim Acta

January 2025

Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea. Electronic address:

Background: Sarcopenia, which is associated with many pathways and molecular mechanisms, not only deteriorates the quality of life in old age but is also linked to various diseases. The ratio between cortisol and dehydroepiandrosterone sulfate (DHEAS) was utilized as a candidate method to diagnose sarcopenia. The hormones can fluctuate in concentration throughout the day, so monitoring the ratio between the two hormones is necessary.

View Article and Find Full Text PDF

Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems.

Water Res

December 2024

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.

View Article and Find Full Text PDF

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!