In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042511 | PMC |
http://dx.doi.org/10.1155/2020/6565396 | DOI Listing |
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFPrevious studies have suggested that systemic viral infections may increase risks of dementia. Whether this holds true for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infections is unknown. Determining this is important for anticipating the potential future incidence of dementia.
View Article and Find Full Text PDFNat Med
January 2025
Department of Neurology & Neurological Sciences, Stanford Movement Disorders Center, Stanford University, Stanford, CA, USA.
Cerebral accumulation of alpha-synuclein (αSyn) aggregates is the hallmark event in a group of neurodegenerative diseases-collectively called synucleinopathies-which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Currently, these are diagnosed by their clinical symptoms and definitively confirmed postmortem by the presence of αSyn deposits in the brain. Here, we summarize the drawbacks of the current clinical definition of synucleinopathies and outline the rationale for moving toward an earlier, biology-anchored definition of these disorders, with or without the presence of clinical symptoms.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan.
The prevalence of Alzheimer's disease (AD) is increasing as society ages. The details of AD pathogenesis have not been fully elucidated, and a comprehensive gene expression analysis of the process leading up to the onset of AD would be helpful for understanding the mechanism. We performed an RNA sequencing analysis on a cohort of 1227 Japanese blood samples, representing 424 AD patients, 543 individuals with mild cognitive impairment (MCI), and 260 cognitively normal (CN) individuals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!