The capability of three quaternized styryl-azinium iodides to bind cellular RNA has been tested by means of Fluorescence Confocal Microscopy imaging of stained MCF-7 cells treated with RNase. Their association constants have been estimated through spectrophotometric and fluorimetric titrations with tRNA and compared to their affinity toward DNA. Transient absorption spectroscopy with femtosecond resolution confirmed the binding of the investigated compounds with tRNA and shed new light on the excited state dynamics of their complexes, by revealing a significant lengthening of the lifetime of S upon complexation, which parallels the fluorescence quantum yield enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9pp00465c | DOI Listing |
Photochem Photobiol Sci
March 2020
Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.
The capability of three quaternized styryl-azinium iodides to bind cellular RNA has been tested by means of Fluorescence Confocal Microscopy imaging of stained MCF-7 cells treated with RNase. Their association constants have been estimated through spectrophotometric and fluorimetric titrations with tRNA and compared to their affinity toward DNA. Transient absorption spectroscopy with femtosecond resolution confirmed the binding of the investigated compounds with tRNA and shed new light on the excited state dynamics of their complexes, by revealing a significant lengthening of the lifetime of S upon complexation, which parallels the fluorescence quantum yield enhancement.
View Article and Find Full Text PDFPhotochem Photobiol Sci
November 2011
Dipartimento di Chimica and Centro di Eccellenza Materiali Innovativi Nanostrutturati, Università di Perugia, Italy.
The relaxation properties of the excited states of three iodides of trans-1,2-diarylethene analogues (where one aryl group is a methylpyridinium, methylquinolinium or dimethylimidazolium group and the other one is a phenyl ring para-substituted by a pyrimidine ring) have been investigated in buffered (pH = 7) aqueous solution. As found in previous works for several analogues, these quaternized salts undergo efficient trans→cis photoisomerization while the yield of the radiative deactivation is very small at room temperature. The solvent effect on the spectral behaviour indicates the occurrence of intramolecular charge transfer which can induce interesting non-linear optical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!