A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The involvement of TRP channels in memory formation and task retrieval in a passive avoidance task in one-day old chicks. | LitMetric

An increase in the intracellular Ca2+ level in neurons is one of the main steps in the memory formation cascade. The increase results from extracellular Ca2+ influx by activation of ionotropic glutamate receptors and release from intracellular stores by the stimulation of IP3 receptors (IP3Rs) via group I metabotropic glutamate receptors (mGluR1/5). Recent data indicate an additional mechanism resulting in Ca2+ influx into neurons, triggered by intracellular signals that are directly connected to the activation of group I mGluRs. This influx occurs through transient receptor potential (TRP) channels, which are permeable to Na+, K+ and, mainly, Ca2+. These channels are activated by increases in intracellular Ca2+, diacylglycerol (DAC) and inositol 1,4,5-triphosphate (IP3) level resulting from a group I mGluR activation. The aim of the present study was to investigate the participation of TRP channels, especially from TRPC and TRPV groups, in memory consolidation and reconsolidation and memory retrieval processes in a passive avoidance task in one-day old chicks. TRP channels were blocked by the injection of the unspecific channel modulators SKF 96365 (2.5 µl 30 µM/hemisphere) and 2-APB (2.5 µl 10 µM/hemisphere) directly into the intermediate medial mesopallium (IMM) region of the chick brain immediately after initial training or after a reminder. The inhibition of specific TRP channels (TRPV1, TRPV3 or TRPC3) was achieved by the application of selective antibodies. Our results demonstrate that the inhibition of TRP channels by the application of both modulators disrupted memory consolidation, resulting in permanent task amnesia. The inhibition of the TRPV1, TRPC3 and TRPV3 channels by specific antibodies resulted in similar amnesia. Moreover, the inhibition of TRP channels by SKF 96365 and 2-APB at different time points after initial training or after the reminder also resulted in amnesia, indicating the role of TRP channels in memory retrieval. The inhibition of calcium influx through these channels resulted in permanent memory disruption, which suggests that the calcium signal generated by TRP channels is crucial for memory formation and retrieval processes. For the first time, the important role of TRPV3 channels in memory formation was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2020.107209DOI Listing

Publication Analysis

Top Keywords

trp channels
36
memory formation
16
channels
13
channels memory
12
memory
9
passive avoidance
8
avoidance task
8
task one-day
8
one-day chicks
8
intracellular ca2+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!