When ambiguous visual stimuli are presented to the eyes, conscious perception can spontaneously alternate across the competing interpretations - which was known as bistable perception. The spontaneous alternation of perception might indicate a connection between bistable perception and the dynamic interaction of brain networks. Here, we hypothesized that individual differences in perceptual dynamics may be reflected in dynamics of spontaneous neural activities. To test this idea, we investigated the relationship between the percept duration and the reconfiguration patterns of dynamic brain networks as measured by the functional connectivity (FC) during the resting state. Firstly, we found that individual difference of percept duration is associated with the temporal variability of the brain regions which were previously reported in studies of bistable perception, including anterior cingulate cortex (ACC), dorsal medial prefrontal cortex (DMPFC), dorsal lateral prefrontal cortex (DLPFC), superior parietal lobule (SPL), inferior parietal lobule (IPL), precuneus, insula, and V5. Secondly, there is a positive relationship between the temporal variability within the frontal-parietal network (FPN) and the percept duration. Thirdly, our results indicated that individual difference of bistable perception was related to the dynamic interaction between large-scale functional networks including default mode network (DMN), FPN, cingulo-opercular network (CON), dorsal attention network (DAN), salience network (SN), memory retrieval network (MRN). Altogether, our results demonstrated that inter-individual variability in bistable perception was associated with dynamic coupling of brain regions and networks involved in primary visual processing, spatial attention, and cognitive control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2020.107426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!