Perisynaptic schwann cells - The multitasking cells at the developing neuromuscular junctions.

Semin Cell Dev Biol

Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Łukasiewicz Research Network - PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland. Electronic address:

Published: August 2020

Neuromuscular junctions (NMJs) are specialized synapses in the peripheral nervous system that allow the transmission of neuronal impulses to skeletal muscles for their contraction. Due to its size and accessibility, the NMJ is a commonly used model for studying basic principles of synapse organization and function. Similar to synapses in the central nervous system, NMJs are composed of presynaptic axonal terminals, the postsynaptic machinery formed at the membrane of the muscle fibers, and the synapse-associated glial cells. The special glial cells at the NMJs are called terminal Schwann cells or perisynaptic Schwann cells (PSCs). Decades of studies on the NMJ, as well as the most recent discoveries, have revealed multiple functions for PSCs at different stages of synaptic formation, maintenance, and disassembly. This review summarizes major observations in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2020.02.011DOI Listing

Publication Analysis

Top Keywords

schwann cells
12
perisynaptic schwann
8
neuromuscular junctions
8
nervous system
8
glial cells
8
cells
6
cells multitasking
4
multitasking cells
4
cells developing
4
developing neuromuscular
4

Similar Publications

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Intramedullary schwannomas are a type of benign spinal cord tumor that originates from the Schwann cells of the nerve sheath. They are relatively rare and typically occur within the spinal cord itself, rather than in the surrounding tissue. Treatment options for cervical intramedullary schwannomas include surgical removal of the tumor, radiation therapy, and observation.

View Article and Find Full Text PDF

Robotic-Assisted Minimally Invasive Resection of Multiple Oesophageal Schwannomas: A Case Report.

Cureus

November 2024

Department of Upper Gastrointestinal and Hepatobiliary Surgery, Monash Health, Melbourne, AUS.

Schwannomas are rare, benign tumours arising from Schwann cells, with oesophageal cases representing a small fraction. Their variety of symptoms and nonspecific imaging features often make preoperative diagnosis challenging, frequently requiring immunohistochemical staining for confirmation. We describe the case of a 62-year-old woman with progressive dysphagia, found to have a subepithelial mass at the gastroesophageal junction (GOJ).

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Angiogenesis-promoting effect of SKP-SC-EVs-derived miRNA-30a-5p in peripheral nerve regeneration by targeting LIF and ANGPT2.

J Biol Chem

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:

Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo pre-vascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!