Approved LXR agonists exert unspecific effects on pancreatic β-cell function.

Endocrine

Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.

Published: June 2020

Novel agonists of the nuclear liver-X-receptor (LXR) are designed to treat metabolic disorders or cancer. The rationale to develop these new drugs is based on promising results with established LXR agonist like T0901317 and GW3965. LXRα and LXRβ are expressed in β-cells, and expression is increased by T0901317. The aim of the present study was to evaluate whether effects of these drugs on β-cell function are specific and reliably linked to LXR activation. T0901317 and GW3965, widely used as specific LXR agonists, show rapid, non-genomic effects on stimulus-secretion coupling of mouse pancreatic β-cells at low µM concentrations. T0901317 lowered the cytosolic Ca concentration, reduced or completely inhibited action potentials, and decreased insulin secretion. GW3965 exerted similar effects on insulin secretion. T0901317 affected the production of reactive oxygen species and ATP. The involvement of the classical nuclear LXRs in T0901317- and GW3965-mediated effects in β-cells could be ruled out using LXRα, LXRβ and double knockout mice. Our results strongly suggest that LXR agonists, that are considered to be specific for this receptor, interfere with mitochondrial metabolism and metabolism-independent processes in β-cells. Thus, it is indispensable to test novel LXR agonists accompanying to ongoing clinical trials for acute and chronic effects on cell function in cellular systems and/or animal models lacking classical LXRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308254PMC
http://dx.doi.org/10.1007/s12020-020-02241-4DOI Listing

Publication Analysis

Top Keywords

lxr agonists
16
β-cell function
8
t0901317 gw3965
8
lxrα lxrβ
8
insulin secretion
8
effects
6
lxr
6
agonists
5
t0901317
5
approved lxr
4

Similar Publications

Introduction: Macrophages abundantly express liver X receptors (LXRs), which are ligand-dependent transcription factors and sensors of several cholesterol metabolites. In response to agonists, LXRs induce the expression of key lipid homeostasis regulators. Crosstalk between LXRs and inflammatory signals exist in a cell type- and gene-specific manner.

View Article and Find Full Text PDF

A plethora of studies have demonstrated the crucial role played by Liver X Receptors (LXRs) in cancer. However, whether LXRs activation results in pro-versus anti-tumor effects is still matter of debate. Recently, we have reported the ability of 22(S)-hydroxycholesterol-3-sulfate (PFM037) to antagonize LXRα activity, and, at the same time, its capability to improve in-vivo anti-tumor immune responses.

View Article and Find Full Text PDF

Objective: Liver X receptors (LXRs) play essential roles in cholesterol homeostasis and immune response. In obesity, elevated cholesterol levels trigger proinflammatory responses; however, the specific contributions of LXRs to adipose tissue (AT) macrophage (ATM) phenotype and metabolic programming are not fully understood. In this study, we determine the role of LXR isoforms in diet-induced obesity AT inflammation and insulin resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Arylamine-acetyltransferase 2 (NAT2) is implicated in drug metabolism and may be linked to dyslipidemia and cardiometabolic disorders, highlighting its role in metabolic health.
  • Recent research has indicated that NAT2 expression is influenced by glucose and insulin levels, and it is co-expressed with liver nuclear receptors that impact glucose and lipid balance.
  • The study tested whether various hepatic nuclear receptors (FXR, PXR, LXR, PPARα) can regulate NAT2 expression in human liver cells, finding that none significantly affected NAT2 levels, suggesting the need for further investigation into its transcriptional regulation.
View Article and Find Full Text PDF

Liver X receptor unlinks intestinal regeneration and tumorigenesis.

Nature

November 2024

Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.

Uncontrolled regeneration leads to neoplastic transformation. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!