Purpose: Chondrocyte -based tissue engineering has been a promising option for the treatment of cartilage lesions. In previous literature, TD198946 has been shown to promote chondrogenic differentiation which could prove useful in cartilage regeneration therapies. Our study aimed to investigate the effects of TD198946 in generating engineered cartilage using dedifferentiated chondrocyte-seeded collagen scaffolds treated with TD198946.
Methods: Articular chondrocytes were isolated from mini pig knees and expanded in 2-dimensional cell culture and subsequently used in the experiments. 3-D pellets were then cultured for two weeks. Cells were also cultured in a type I collagen scaffolds for four weeks. Specimens were cultured with TD198946, BMP-2, or both in combination. Outcomes were determined by gene expression levels of RUNX1, SOX9, ACAN, COL1A1, COL2A1 and COL10A1, the glycosaminoglycan content, and characteristics of histology and immunohistochemistry. Furthermore, the maturity of the engineered cartilage cultured for two weeks was evaluated through subcutaneous implantation in nude mice for four weeks.
Results: Addition of TD198946 demonstrated the upregulation of gene expression level except for ACAN, type II collagen and glycosaminoglycan synthesis in both pellet and 3D scaffold cultures. TD198946 and BMP-2 combination cultures showed higher chondrogenic differentiation than TD198946 or BMP-2 alone. The engineered cartilage maintained its extracellular matrices for four weeks post implantation. In contrast, engineered cartilage treated with either TD198946 or BMP-2 alone was mostly absorbed.
Conclusions: Our results indicate that TD198946 could improve quality of engineered cartilage by redifferentiation of dedifferentiated chondrocytes pre-implantation and promoting collagen and glycosaminoglycan synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060980 | PMC |
http://dx.doi.org/10.1186/s40634-020-00228-8 | DOI Listing |
Drug Des Devel Ther
January 2025
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People's Republic of China.
Silk protein, as a natural polymer material with unique structures and properties, exhibits tremendous potential in the biomedical field. Given the limited production and restricted properties of natural silk proteins, molecular biotechnology has been extensively applied in silk protein genetic engineering to produce novel silk proteins with specific properties. This review outlines the roles of major model organisms, such as silkworms and spiders, in silk protein production, and provides a detailed introduction to the applications of gene editing technologies (eg, CRISPR-Cas9), transgenic expression technologies, and synthetic biology techniques in silk protein genetic engineering.
View Article and Find Full Text PDFCartilage
January 2025
High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Objective: The objective of this study was to assess the maturation of matrix-associated autologous chondrocyte transplantation (MACT) grafts up to 2 years after the surgery using gray-level co-occurrence matrix (GLCM) texture analysis of quantitative T maps, compare the results with the microfracturing technique (MFX) control group, and relate these results to the morphological MOCART 2.0 score.
Design: A subcohort of 37 patients from prospective, multi-center study underwent examination on a 3T MR scanner, including a T mapping sequence at 3, 12, and 24 months after surgery.
Objective: This study aims to investigate the relationship between preoperative cervical intervertebral foramen width and area and the persistence of postoperative pain in patients diagnosed with cervical spondylotic radiculopathy (CSR).
Methods: Patients were divided into two groups, based on their pain relief at the 6-month postoperative follow-up: the pain relief group and the persistent pain group. We compared various parameters, including age, sex, body mass index (BMI), duration of symptoms, preoperative Japanese Orthopedic Association (JOA) score, Neck Disability Index (NDI) score, postoperative ratio of disc space distraction, preoperative width of the intervertebral foramen (WIVF), and area of the intervertebral foramen (AIVF) between the two groups.
ACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFBiomater Transl
November 2024
Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology; Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!