The aim of this study is to test the capability of the anaerobic digestion model n1 (ADM1) to reproduce data from full-scale digesters operated in a wastewater resource recovery facility (WRRF) where both thermal hydrolysis and codigestion with industrial waste are carried out. Furthermore, the potential uses of the model in a WRRF are also described, with particular relevance for plant engineers/operators. The model capability was calibrated and validated with data from full-scale digesters from the Mapocho-Trebal WRRF (Biofactoría) in Santiago, Chile. A success simulation rate, defined as the percentage of experimental values of a certain variable that lies within the simulation band given by a simulation tolerance established by the user/operator, was established to test the capability of the model as objectively as possible. Regarding the full-scale digester fed with thermally pretreated mixed sludge, success rates of 65% for biogas production and 60-100% for other variables were achieved. Regarding the full-scale digester in codigestion mode, the model had a success rate of approximately 60% for predicting the biogas flow for the whole evaluation period, while for the other variables, values between 70 and 100% were attained. The lowest success rates were observed for the volatile fatty acid (VFA) concentration in the digestate. Despite the lack of available data and the number of assumptions that had to be made, the model was demonstrated to be capable of reproducing the behavior of the full-scale reactors. A proper, up-to-date, calibrated and validated model can aid in the decision-making process in a WRRF, for instance, in determining some unmeasured inlet conditions, in improving the resilience of the process and in managing the incorporation of a new cosubstrate into the plant, among others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2020.115654 | DOI Listing |
Environ Pollut
December 2024
College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China. Electronic address:
Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China. Electronic address:
The microalgal-bacterial granular sludge (MBGS) process shows potential for carbon-neutral wastewater treatment, yet its application in wastewater treatment plants remains underexplored. This study attempted to use a continuous-flow raceway reactor to treat real municipal wastewater using the MBGS process. The results showed that the removal efficiencies of organics peaked on the fifth day, while declining trends were observed for nitrogen and phosphorus removal.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Environmental and Resource Science, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
Microalgal-bacterial biofilms are a competitive wastewater treatment technology. This study investigated the impact of photoperiod on the characteristics and performance of these biofilms in treating pig farm wastewater. Under continuous lighting (L-24h), we observed optimal NH-N removal efficiency, minimal chlorophyll levels, and peak concentrations of polysaccharides and c-di-GMP.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
Invasive alien plants pose a great threat to local plants and ecosystems. How to effectively alleviate this hazard is an unresolved issue. This study explored the carbon release characteristics of an invasive plant Spartina alterniflora and evaluated the ability of nitrogen removal from shrimp culture wastewater through constructing seawater wetland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!