It is desirable to unravel the correlation between the geometric and electronic structures and the activity and further prepare high-performance electrocatalysts. Here in this paper, trimetallic Ru@Au-Pt core-shell nanoparticles were prepared by sequential ethanol reduction method, and further subject to characterization of X-ray diffraction, high angle annular dark field transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical CO stripping. Further analysis based on Williamson-Hall method revealed that the Au/Pt atomic ratio and shell thickness result in apparent variation of micro-strain and CO binding energy of Ru@AuPt nanoparticles, where the CO oxidation peak potential showed an inverted volcano-shape dependence on the microstrain of the metal nanoparticles while the catalytic activity towards electrooxidation of formic acid is linearly dependent on the micro-strain. The best Ru@Au-Pt catalyst delivers a specific activity of 4.14 mA cm, which is 52 times that of Pt/C, respectively. This study indicated that the microstrain and stacking fault of metal nanoparticles might be a good descriptor for the catalytic activity and may shed light the rational design, synthesis and surface engineering towards the high-performance electrocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.02.111 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.
View Article and Find Full Text PDFLangmuir
January 2025
Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
Electrochemical CO reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO into valuable chemicals and fuels, thereby reducing atmospheric CO levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CORR.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Photochemistry-based silica formation offers a pathway toward energy-efficient and controlled fabrication processes. While the transformation of poly(dimethylsiloxane) (PDMS) to silica (often referred to as SiO due to incomplete conversion) under deep ultraviolet (DUV) irradiation in the presence of oxygen/ozone has experimentally been validated, the detailed mechanism remains elusive. This study demonstrates the underlying molecular-level mechanism of PDMS-to-silica conversion using density functional theory (DFT) calculations.
View Article and Find Full Text PDFSmall
January 2025
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!