Novel brominated flame retardants in West Antarctic atmosphere (2011-2018): Temporal trends, sources and chiral signature.

Sci Total Environ

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: June 2020

Novel brominated flame retardants (NBFRs) were comprehensively investigated in both gaseous and particle phase samples collected using a high-volume active air sampler (HV-AAS) at the Chinese Great Wall Station in King George Island, West Antarctica from 2011 to 2018. The concentrations of ∑NBFRs ranged from 0.27 to 3.0 pg m, with a mean value of 1.1 ± 0.50 pg m and the levels showed a slightly increasing trend over the eight years. Decabromodiphenyl ethane (DBDPE) was the predominant NBFR with a relative contribution of 50% on average. Most of the studied NBFRs tended to distribute in gaseous phase with an average ratio of 72 ± 16% while NBFRs with higher log K values had higher proportions in particle phase. The gas/particle partitioning models were employed to evaluate the environmental behavior of NBFRs. Compared to the equilibrium-state-based model, the steady-state-based model performed much better to predict the gas/particle partitioning of NBFRs in the West Antarctic atmosphere. Additionally, no temperature dependence was found for NBFRs except rac-(1R,2R,5R,6R)-1,2,5,6-tetrabromocyclooctane (β-TBCO). The annual mean concentrations of ∑NBFRs showed a significantly negative correlation with the frequency of east-southeast (ESE, 112.5°) wind and calm wind (~0 m s) (p < 0.05), and a significantly positive correlation with the frequency of wind from northwest interval (west to north-northwest, 270° to 337.5°) (p < 0.05), suggesting a significant effect of air mass from the ocean area. Furthermore, the chiral signature of NBFRs showed commonly non-racemic residue in the atmosphere. The enantiomer fractions (EF) of rac-(1R,2R)-1,2-dibromo-(4S)-4-((1R)-1,2-dibromoethly)cyclohexane (α-TBECH) and β-TBCO were 0.115-0.962 and 0.281-0.795, revealing secondary sources of NBFRs, e.g., seawater-air exchange and/or non-racemic residue in the source regions. As far as we know, this is one of very few studies on NBFRs in the Antarctic atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137557DOI Listing

Publication Analysis

Top Keywords

novel brominated
8
brominated flame
8
flame retardants
8
west antarctic
8
antarctic atmosphere
8
particle phase
8
concentrations ∑nbfrs
8
gas/particle partitioning
8
nbfrs
6
retardants west
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!