In this study, the effects of excess nickel (Ni) (100 μM and 200 μM) on growth, antioxidant production, fatty acid, organic and amino acids profiles were examined in Lemna minor L. After 7 days of Ni treatment, chlorosis, growth inhibition and ROS overproduction were observed, accompanied by Ni accumulation. Interestingly, decreased malondialdehyde (MDA) levels were recorded in fronds upon Ni exposure. Fatty acid profiles in Ni-treated L. minor were characterized by increases in saturated- and decreases in unsaturated fatty acids. Ni excess increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), guiacol peroxidase (GPX), and glutathione reductase (GR), and non-enzymatic antioxidants such as glutathione (GSH) and ascorbic acid (AsA); however, deactivation of ascorbate peroxidase (APX) and catalase (CAT) activities were also observed. Disruption of amino acid metabolism in Ni-exposed fronds was evidenced by the accumulation of cysteine, arginine, threonine, valine, isoleucine, leucine, lysine and phenylalanine, as well as reduced levels of tyrosine, alanine, aspartate and proline. Approximately 299%-396%, 139%-254% and 56%-97% concentration increments in citric, malic and oxalic acids, respectively, were concomitantly observed with significant decreases in tartaric, acetic, and fumaric acids in fronds subjected to Ni stress. Taken together, these results indicated that Ni stress induced negative effects on plant physiological, biochemical and morphological processes; however, it is likely that the coordination of metabolites and antioxidants may ameliorate the damaging effects of Ni accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126366 | DOI Listing |
Scand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
World J Clin Cases
January 2025
Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.
Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the .
View Article and Find Full Text PDFBiosci Microbiota Food Health
August 2024
Department of Gastroenterology, Hematology and Clinical immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki-shi, Aomori 036-8562, Japan.
The beneficial effects of water-soluble dietary fiber on liver fat and fibrosis involve the gut microbiota; however, few epidemiological studies have investigated this association. This large-scale epidemiological study aimed to determine the effect of water-soluble dietary fiber intake on liver fat and fibrosis via gut microbiota for the general population. We divided low- and high-intake groups by median daily water-soluble dietary fiber intake and matched background factors by propensity score matching for sex and age.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
Introduction: Rumen-protected fat (RPF) is a vital dietary energy source for dairy cows. However, the influences of RPF on rumen volatile fatty acid (VFA) content and bacterial communities in goats are poorly documented.
Methods: In this study, 12 castrated male goats (body weight [BW]: 13.
Background: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.
Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!