Puerarin, an important isoflavone, has been widely used for the treatment of angina and hypertension. In this work, we developed a novel electrochemical sensor for the detection of puerarin based on the hybrid of reduced graphene oxide (RGO) and molecularly imprinted polymer (MIP). The RGO/MIP sensor functions by target puerarin recognition and electro-oxidization via a two-proton and two-electron process, enabling the detection of puerarin with good selectivity and high sensitivity. The MIP layer was integrated on the surface of RGO by the electro-co-polymerization of o-phenylenediamine (monomer) and puerarin (template), resulting in high surface area, binding capacity, good conductivity and faster mass transfer. The nanostructure of the RGO/MIP hybrid was demonstrated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Experimental conditions involved in the sensor fabrication process were evaluated. Under the optimized condition, a wide linear range (0.02 μM ∼ 40 μM) and a low detection limit (0.006 μM) were achieved. The sensor was applied to detect puerarin in human urine and injection samples, and the result was comparable with that of the gold standard method of high-performance liquid chromatography (HPLC), indicating a promise in the further application to pharmacokinetics or therapeutic drug monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2020.113221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!