Fabrication of polyphenol-incorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion.

Biomaterials

Institute of Engineering Research, Seoul National University, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea; Institute of Bioengineering, Seoul National University, Republic of Korea. Electronic address:

Published: February 2020

Epigallocatechin gallates (EGCGs), isolated from green tea, have intrinsic properties such as anti-oxidant, anti-inflammation, and radical scavenger effects. In this study, we report a tissue adhesive and anti-inflammatory hydrogel formed by high-affinity enzymatic crosslinking of polyphenolic EGCGs. A mixture of EGCG conjugated hyaluronic acids (HA_E) and tyramine conjugated hyaluronic acids (HA_T) was reacted with tyrosinase isolated from Streptomyces avermitillis (SA_Ty) to form that displayed fast enzyme kinetic to form a crosslinked adhesive hydrogel. A 1,2,3-trihydroxyphenyl group in EGCG displayed a high affinity to SA_Ty that allowed HA_E to be quickly oxidized and crosslinked with HA_T to form HA_T and HA_E mixed hydrogel (HA_TE). We then compared the HA_TE hydrogel with commercially available tissue adhesives, such as cyanoacrylate and fibrin glue. We report that the HA_TE exhibited the highest tissue adhesiveness both in wet and dry conditions. Furthermore, HA_TE successfully closed a skin wound and displayed insignificant host tissue responses. This demonstrates that polyphenol-incorporated anti-inflammatory hydrogel may provide a robust tissue adhesive platform for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2020.119905DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory hydrogel
12
polyphenol-incorporated anti-inflammatory
8
high-affinity enzymatic
8
enzymatic crosslinking
8
tissue adhesive
8
conjugated hyaluronic
8
hyaluronic acids
8
hydrogel
6
tissue
6
fabrication polyphenol-incorporated
4

Similar Publications

Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.

View Article and Find Full Text PDF

The management of diabetic wounds has become an important task for the public health system. Hydrogels are highly anticipated as modern wound dressings for the treatment of diabetic wounds, hence we have prepared a MOK-Gel using methacrylated oxidized konjac glucomannan (MOK) crosslinked with acrylamide (AM). On this basis, we have incorporated drugs such as UiO-66 loaded with sodium ferulate (SF) and deferoxamine (DFO) to develop the hydrogel wound dressing DUS@MOK-Gel (a hydrogel composed of methacrylated oxidized konjac glucomannan, loaded with DFO and UiO-66 loaded with sodium ferulate).

View Article and Find Full Text PDF

Injectable hydrogel-assisted local lipopolysaccharide delivery improves immune checkpoint blockade therapy.

Acta Biomater

January 2025

Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, PR China. Electronic address:

Tumor-associated macrophages (TAMs) significantly influence the clinical outcomes of immune checkpoint blockade (ICB) therapy. Strategies aimed at reprogramming TAMs from the immunosuppressive M2 phenotype to the pro-inflammatory M1 phenotype hold promise for enhancing ICB efficacy. Lipopolysaccharide (LPS), a potent Toll-like receptor 4 (TLR4) ligand, can reprogram TAMs toward an M1 phenotype.

View Article and Find Full Text PDF

Effect of different crosslinking agents on carboxymethyl chitosan-glycyrrhizic acid hydrogel: Characterization and biological activities comparison.

Int J Biol Macromol

January 2025

School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Institute for Safflower Industry Research, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization (Ministry of Education), School of Pharmacy, Shihezi University, Shihezi 832003, China. Electronic address:

Hydrogels were widely utilized in biomedical applications, with their mechanical properties and drug release behavior largely dependent on the type and degree of crosslinking. In this study, the effects of anhydrous ferrous chloride (Fe), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), and polyvinyl alcohol/borax (PVA/Borax) on the properties of carboxymethyl chitosan (CMCS) and glycyrrhizic acid (GA) hydrogels were investigated. The GA-CMCS-based hydrogels (GFC, GEDC, GPBC) were prepared and their Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and rheological properties were analyzed.

View Article and Find Full Text PDF

Blended ƙ-carrageenan and xanthan gum hydrogel containing ketoprofen-loaded nanoemulsions: Design, characterization, and evaluation in an animal model of rheumatoid arthritis.

Drug Deliv Transl Res

January 2025

Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.

This study reports the preparation of hydrogels (HG) made with xanthan gum (XG) and ƙ-carrageenan (KC) polysaccharides containing ketoprofen (KET)-loaded nanoemulsions (NK) and their evaluation in a rheumatoid arthritis (RA) model. The nano-based HGs exhibited nanometric-sized droplets (~ 100 nm), an acidic pH (5.10-6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!