AI Article Synopsis

Article Abstract

Early changes in inhibitory synapse connectivities are thought to contribute to the excitation/inhibition imbalance preceding neurodegeneration in Alzheimer's disease (AD). Recently, we reported a robust increase in the level of different key-proteins of inhibitory synapses in hippocampal subregions of pre-symptomatic APPswe-PS1 mice, a model of cerebral amyloidosis. Besides increased inhibitory synaptic clusters on parvalbumin-positive projections in CA1 and CA3, we observed impaired communication between these two hippocampal areas of young APP-PS1 mice. Interestingly, the phosphorylation of gephyrin, a major organizer of inhibitory synapses, was also increased. Here, we demonstrate that the protein levels of CDK5, a kinase involved in the phosphorylation of gephyrin, and its regulatory protein p35 are also significantly increased in hippocampal subregions of young APP-PS1 mice. Consistently, the expression of hAPP-swe in cultured hippocampal neurons resulted in higher p35-protein levels, indicating a possible molecular link between increased Aβ-production and the elevated p35/CDK5 levels seen in vivo. Further, a shRNA mediated downregulation of p35-expression in hippocampal neurons correlated with a decrease in gephyrin phosphorylation and in a reduced density of synaptic γ2-GABAA-receptor clusters. These findings, together with the detection of gephyrin colocalization with CDK5 and p35 by immunostaining and proximity ligation experiments in vivo and in vitro, are supporting our hypothesis that Aβ has a profound impact on inhibitory network properties, likely mediated at least in part by p35/CDK5 signaling. This further underscores the impact of altered inhibitory synaptic transmission in AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-190976DOI Listing

Publication Analysis

Top Keywords

inhibitory synapses
12
p35/cdk5 signaling
8
changes inhibitory
8
cerebral amyloidosis
8
hippocampal subregions
8
inhibitory synaptic
8
young app-ps1
8
app-ps1 mice
8
phosphorylation gephyrin
8
hippocampal neurons
8

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals have been widely used to study how cortical neural circuits perform cognitive tasks. Training such networks to perform tasks that require information maintenance over a brief period (i.e.

View Article and Find Full Text PDF

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP) when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone.

View Article and Find Full Text PDF

Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA.

Commun Biol

January 2025

Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.

MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!