Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of autonomous underwater vehicles (AUVs) for various applications have grown with maturing technology and improved accessibility. The deployment of AUVs for under-ice marine science research in the Antarctic is one such example. However, a higher risk of AUV loss is present during such endeavors due to the extremities in the Antarctic. A thorough analysis of risks is therefore crucial for formulating effective risk control policies and achieving a lower risk of loss. Existing risk analysis approaches focused predominantly on the technical aspects, as well as identifying static cause and effect relationships in the chain of events leading to AUV loss. Comparatively, the complex interrelationships between risk variables and other aspects of risk such as human errors have received much lesser attention. In this article, a systems-based risk analysis framework facilitated by system dynamics methodology is proposed to overcome existing shortfalls. To demonstrate usefulness of the framework, it is applied on an actual AUV program to examine the occurrence of human error during Antarctic deployment. Simulation of the resultant risk model showed an overall decline in human error incident rate with the increase in experience of the AUV team. Scenario analysis based on the example provided policy recommendations in areas of training, practice runs, recruitment policy, and setting of risk tolerance level. The proposed risk analysis framework is pragmatically useful for risk analysis of future AUV programs to ensure the sustainability of operations, facilitating both better control and monitoring of risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/risa.13467 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!