The RAG1 and RAG2 proteins are essential for the assembly of Ag receptor genes in the process known as VDJ recombination, allowing for an immense diversity of lymphocyte Ag receptors. Congruent with their importance, RAG1 and RAG2 have been a focus of intense study for decades. To date, RAG1 has been studied as a single isoform; however, our identification of a spontaneous nonsense mutation in the 5' region of the mouse Rag1 gene lead us to discover N-truncated RAG1 isoforms made from internal translation initiation. Mice homozygous for the RAG1 nonsense mutation only express N-truncated RAG1 isoforms and have defects in Ag receptor rearrangement similar to human Omenn syndrome patients with truncating 5' frameshift mutations. We show that the N-truncated RAG1 isoforms are derived from internal translation initiation start sites. Given the seemingly inactivating mutation, it is striking that homozygous mutant mice do not have the expected SCID. We propose that evolution has garnered RAG1 and other important genes with the ability to form truncated proteins via internal translation to minimize the deleterious effects of 5' nonsense mutations. This mechanism of internal translation initiation is particularly important to consider when interpreting nonsense or frameshift mutations in whole-genome sequencing, as such mutations may not lead to loss of protein.

Download full-text PDF

Source
http://dx.doi.org/10.4049/immunohorizons.2000001DOI Listing

Publication Analysis

Top Keywords

rag1 isoforms
16
internal translation
16
nonsense mutation
12
n-truncated rag1
12
translation initiation
12
rag1
10
rag1 nonsense
8
rag1 rag2
8
frameshift mutations
8
nonsense
5

Similar Publications

CD247, also known as CD3ζ, is a crucial signaling molecule that transduces signals delivered by TCR through its three ITAMs. CD3ζ is required for successful thymocyte development. Three additional alternatively spliced variants of murine CD247 have been described, that is, CD3ι, CD3θ, and CD3η, that differ from CD3ζ in the C terminus such that the third ITAM is lost.

View Article and Find Full Text PDF

Alternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether Notch1-DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of colitis.

View Article and Find Full Text PDF

Recent studies suggest that short pentraxins in fish might serve as biomarkers for not only bacterial infections, as in higher vertebrates including humans, but also for viral ones. These fish orthologs of mammalian short pentraxins are currently attracting interest because of their newly discovered antiviral activity. In the present work, the modulation of the gene expression of all zebrafish short pentraxins (CRP-like proteins, CRP1-7) was extensively analyzed by quantitative polymerase chain reaction.

View Article and Find Full Text PDF

The RAG1 and RAG2 proteins are essential for the assembly of Ag receptor genes in the process known as VDJ recombination, allowing for an immense diversity of lymphocyte Ag receptors. Congruent with their importance, RAG1 and RAG2 have been a focus of intense study for decades. To date, RAG1 has been studied as a single isoform; however, our identification of a spontaneous nonsense mutation in the 5' region of the mouse Rag1 gene lead us to discover N-truncated RAG1 isoforms made from internal translation initiation.

View Article and Find Full Text PDF

Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!