Alzheimer's disease (AD) is the most common cause of dementia and, despite decades of effort, there is no effective treatment. In the last decade, many association studies have identified genetic markers that are associated with AD status. Two of these studies suggest that an epistatic interaction between variants rs1049296 in the transferrin (TF) gene and rs1800562 in the homeostatic iron regulator (HFE) gene, commonly known as hemochromatosis, is in genetic association with AD. TF and HFE are involved in the transport and regulation of iron in the brain, and disrupting these processes exacerbates AD pathology through increased neurodegeneration and oxidative stress. However, by using a significantly larger data set from the Alzheimer's Disease Genetics Consortium, we fail to detect an association between TF rs1049296 or HFE rs1800562 with AD risk (TF rs1049296 p = 0.38 and HFE rs1800562 p = 0.40). In addition, logistic regression with an interaction term and a synergy factor analysis both failed to detect epistasis between TF rs1049296 and HFE rs1800562 (SF = 0.94; p = 0.48) in AD cases. Each of these analyses had sufficient statistical power (power > 0.99), suggesting that previously reported associations may be the result of more complex epistatic interactions, genetic heterogeneity, or false-positive associations because of limited sample sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206870PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2020.01.013DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
hfe rs1800562
12
rs1049296 hfe
8
hfe
5
failure detect
4
detect synergy
4
synergy variants
4
variants transferrin
4
transferrin hemochromatosis
4
hemochromatosis alzheimer's
4

Similar Publications

Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.

View Article and Find Full Text PDF

Searching for new drugs to treat Alzheimer's disease dementia through multiple pathways.

World J Clin Cases

January 2025

Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.

Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important.

View Article and Find Full Text PDF

Comprehensive review on neprilysin (NEP) inhibitors: design, structure-activity relationships, and clinical applications.

Front Pharmacol

December 2024

Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Neprilysin (NEP), a zinc-dependent membrane-bound metallopeptidase, regulates various bioactive peptides, particularly in kidneys, vascular endothelium, and the central nervous system. NEP's involvement in metabolizing natriuretic peptides, insulin, and enkephalins makes it a promising target for treating cardiovascular and Alzheimer's diseases. Several NEP inhibitors, such as sacubitril and omapatrilat, have been approved for clinical use, which inhibit NEP activity to prolong the bioactivity of beneficial peptides, thereby exerting therapeutic effects.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!