The root meristem-one of the plant's centers of continuous growth-is a conveyer belt in which cells of different identities are pushed through gradients along the root's longitudinal axis. An auxin gradient has long been implicated in controlling the progression of cell states in the root meristem. Recent work has shown that a PLETHORA (PLT) protein transcription factor gradient, which is under a delayed auxin response, has a dose-dependent effect on the differentiation state of cells. The direct effect of auxin concentration on differential transcriptional outputs remains unclear. Genomic and other analyses of regulatory sequences show that auxin responses are likely controlled by combinatorial inputs from transcription factors outside the core auxin signaling pathway. The passage through the meristem exposes cells to varying positional signals that could help them interpret auxin inputs independent of gradient effects. One open question is whether cells process information from the changes in the gradient over time as they move through the auxin gradient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ctdb.2019.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!