AI Article Synopsis

Article Abstract

Background: A comprehensive understanding of the pre-existing genetic variation in genes associated with antibiotic resistance in the Mycobacterium tuberculosis complex (MTBC) is needed to accurately interpret whole-genome sequencing data for genotypic drug susceptibility testing (DST).

Methods: We investigated mutations in 92 genes implicated in resistance to 21 anti-tuberculosis drugs using the genomes of 405 phylogenetically diverse MTBC strains. The role of phylogenetically informative mutations was assessed by routine phenotypic DST data for the first-line drugs isoniazid, rifampicin, ethambutol, and pyrazinamide from a separate collection of over 7000 clinical strains. Selected mutations/strains were further investigated by minimum inhibitory concentration (MIC) testing.

Results: Out of 547 phylogenetically informative mutations identified, 138 were classified as not correlating with resistance to first-line drugs. MIC testing did not reveal a discernible impact of a Rv1979c deletion shared by M. africanum lineage 5 strains on resistance to clofazimine. Finally, we found molecular evidence that some MTBC subgroups may be hyper-susceptible to bedaquiline and clofazimine by different loss-of-function mutations affecting a drug efflux pump subunit (MmpL5).

Conclusions: Our findings underline that the genetic diversity in MTBC has to be studied more systematically to inform the design of clinical trials and to define sound epidemiologic cut-off values (ECOFFs) for new and repurposed anti-tuberculosis drugs. In that regard, our comprehensive variant catalogue provides a solid basis for the interpretation of mutations in genotypic as well as in phenotypic DST assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060619PMC
http://dx.doi.org/10.1186/s13073-020-00726-5DOI Listing

Publication Analysis

Top Keywords

phylogenetically informative
12
informative mutations
12
mutations genes
8
genes implicated
8
antibiotic resistance
8
resistance mycobacterium
8
mycobacterium tuberculosis
8
tuberculosis complex
8
anti-tuberculosis drugs
8
phenotypic dst
8

Similar Publications

Goose astrovirus (GoAstV) has emerged as a significant pathogen affecting the goose industry in China, with GoAstV-2 becoming the dominant genotype since 2017. This study explores the genetic and structural factors underlying the prevalence of GoAstV-2, focusing on codon usage bias, spike protein variability, and structural stability. Phylogenetic and effective population size analyses revealed that GoAstV-2 experienced rapid expansion between 2017 and 2018, followed by population stabilization.

View Article and Find Full Text PDF

Schistosomiasis poses a significant global health threat, particularly in tropical and subtropical regions like Sudan. Although numerous epidemiological studies have examined schistosomiasis in Sudan, the genetic diversity of Schistosoma haematobium populations, specifically through analysis of the mtcox1 gene, remains unexplored. This study aimed to investigate the risk factors associated with urogenital schistosomiasis among school pupils in El-Fasher, Western Sudan, as well as the mtcox1 genetic diversity of human S.

View Article and Find Full Text PDF

The first complete mitochondrial genome of Sumatran striped rabbit Nesolagus netscheri (Schlegel, 1880), and its phylogenetic relationship with other Leporidae.

Sci Rep

January 2025

Department of Biology, Faculty of Mathematics and Natural Science, University of Sriwijaya, Jalan Raya Prabumulih Km 32, Ogan Ilir, South Sumatera, 30682, Indonesia.

Nesolagus netscheri, a Sumatran striped rabbit, is one of the rarest rabbits in the Leporidae family, and its genetic information is still limited. This study provides the first mitochondrial genome and molecular systematic characterization of the Sumatran striped rabbit, Nesolagus netscheri, Indonesia's rarest rabbit. It consists of a circular double-stranded DNA of 16,709 bp.

View Article and Find Full Text PDF

In a phylogeny, trustworthy reliability branch support estimates are as important as the tree itself. We show that reliability support values based on bootstrapping can be improved by combining sequence and structural information from proteins. Our approach relies on the systematic comparison of homologous intra-molecular structural distances.

View Article and Find Full Text PDF

Neisseria gonorrhoeae is an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. The gonococcal transferrin binding protein B (TbpB) is an attractive candidate vaccine antigen. However, it exhibits high levels of antigenic variability, posing a significant obstacle in evoking a broadly protective immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!