Background: High quality cardiopulmonary resuscitation is a key factor in survival with good overall quality of life after out-of-hospital cardiac arrest. Current evidence is predominantly based on studies conducted at low altitude, and do not take into account the special circumstances of alpine rescue missions. We therefore aimed to investigate the influence of physical strain at high altitude on the quality of cardiopulmonary resuscitation.
Methods: Alpine field study. Twenty experienced mountaineers of the Austrian Mountain Rescue Service trained in Basic Life Support (BLS) performed BLS on a manikin in groups of two for 16 min. The scenario was executed at baseline altitude and immediately after a quick ascent over an altitude difference of 1200 m at 3454 m above sea level. The sequence of scenarios was randomised for a cross over analysis. Quality of CPR and exhaustion of participants (vital signs, Borg-Scale, Nine hole peg test) were measured and compared between high altitude and baseline using random-effects linear regression models.
Results: The primary outcome of chest compression depth significantly decreased at high altitude compared to baseline by 1 cm (95% CI 0.5 to 1.3 cm, p < 0.01). There was a significant reduction in the proportion of chest compressions in the target depth (at least 5 cm pressure depth) by 55% (95% CI 29 to 82%, p < 0.01) and in the duration of the release phase by 75 ms (95% CI 48 to 101 ms, p < 0.01). No significant difference was found regarding hands-off times, compression frequency or exhaustion.
Conclusion: Physical strain during a realistic alpine rescue mission scenario at high altitude led to a significant reduction in quality of resuscitation. Resuscitation guidelines developed at sea level are not directly applicable in the mountain terrain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060596 | PMC |
http://dx.doi.org/10.1186/s13049-020-0717-0 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Plants (Basel)
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina.
Herein, we report the presence of a plant paleocommunity, dominated by ferns of the family Osmundaceae, structurally preserved from the only known Mesozoic, fossiliferous geothermal deposits, from the La Matilde Formation (Middle-Upper Jurassic) in the Deseado Massif of Southern Patagonia, Argentina. A total of 13 siliceous chert blocks sampled in an area of approximately 250 m, preserving a monotypic assemblage dominated by Osmundaceae embedded within its original swampy substrate, are documented. Additional Osmundaceae and fewer ferns and conifers are present in the stratigraphically continuous, adjacent chert levels.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China.
, a traditional medicinal plant, is commonly found on the Tibetan Plateau at altitudes of 3100-5200 m. Its primary active medicinal compounds, flavonoids and phenylethanol glycosides (PhGs), exhibit various pharmacological effects, including hemostatic, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. This study analyzed flavonoid and PhG metabolites in the roots of collected from Henan County (HN), Guoluo County (GL), Yushu County (YS), and Chengduo County (CD) in Qinghai Province.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!